

## Fisheries Division Federal Aid Job Progress Report

#### Montana Statewide Fisheries Management

# Federal Aid Project Number: F-113

July 1, 2020 – June 30, 2021

Job Title: (3140 Kootenai River Drainage Fisheries Management)

Abstract:

Only 43 catch cards were issued for the Lake Koocanusa recreational bull trout fishery for the 2020 fishing season. The low level of interest was likely due to the elimination of harvest prompted by declining redd counts in Grave Creek and the Wigwam River in 2019. Based on limited information obtained from just 22 respondents, an estimated 26 bull trout were caught by catch card holders.

A review of the history of the Lake Koocanusa bull trout fishery indicated several trends. Angler interest, effort, and bull trout catch and harvest all decreased through time. Reduced novelty of the fishery and more restrictive harvest limits in more recent years likely influenced these declines. Years with no permitted harvest resulted in extremely low numbers of catch cards issued, suggesting harvest is a significant motivation for participation.

The bull trout population in Lake Koocanusa is closely monitored. Catch card data, redd counts, gillnet surveys, and tributary juvenile abundance estimates are reviewed annually and have led to an adaptive management approach where bull trout harvest limits are proactively adjusted based on gathered information. Montana Fish, Wildlife & Parks has managed the Lake Koocanusa bull trout fishery more conservatively than required by USFWS sub permit TE-07753.

Monitoring the bull trout population and fishery will continue. Adaptive harvest management has maintained a limited sport fishery for bull trout in Lake Koocanusa that will persist if monitoring and response efforts remain proactive. The success of this unique fishery enhances the understanding of bull trout while encouraging stakeholder engagement and informational contributions from anglers.

Angler Survey of Experimental Recreational Bull Trout Fishery for Lake Koocanusa, Montana through the 2020 Season.

Brian Stephens, Fisheries Management Biologist Neil Benson, Fisheries Technician

> Montana Fish, Wildlife & Parks 385 Fish Hatchery Road Libby, Montana 59923



December 2021

### CONTENTS

| CONTENTS                              | 2  |
|---------------------------------------|----|
| LIST OF TABLES                        | 3  |
| LIST OF FIGURES                       | 5  |
| SUMMARY                               | 7  |
| INTRODUCTION                          | 8  |
| BACKGROUND                            | 8  |
| METHODS                               | 9  |
| RESULTS                               | 10 |
| Bull Trout Catch Card/Survey Returns  | 10 |
| Angler Demographics                   | 10 |
| Fishing Pressure Estimates            | 10 |
| Harvest and Catch Estimates           | 12 |
| DISCUSSION                            | 13 |
| Angler Interest                       | 13 |
| Angler Effort                         | 14 |
| Bull Trout Catch                      | 16 |
| Bull Trout Harvest and Take           | 18 |
| Catch Versus Harvest Length Estimates | 20 |
| Bull Trout Redd Counts                | 21 |
| Juvenile Bull Trout Estimates         | 24 |
| Koocanusa Spring Gillnet Catch        | 25 |
| CONCLUSIONS                           | 27 |
| LITERATURE CITED                      | 28 |
| APPENDICIES                           | 29 |

## LIST OF TABLES

| Table 1. Bull trout season angling pressure estimates calculated from catch card and survey     |
|-------------------------------------------------------------------------------------------------|
| results for Lake Koocanusa through the 2020 season11                                            |
| Table 2. Estimated bull trout harvest (reported harvest) and estimated catch (reported catch)   |
| for Lake Koocanusa through the 2020 season12                                                    |
| Table 1A. Linear regression analysis for number of catch cards issued versus year during the    |
| first seven years of the special fishery (Figure 2)                                             |
| Table 2A. Single factor ANOVAS of catch cards issued by season harvest limit (Figure 3) 29      |
| Table 3A. Linear regression analysis for angler days versus license year (Figure 4).      30    |
| Table 4A. Single factor ANOVAS of total angler days by season harvest limit (Figure 5)          |
| Table 5A. Single factor ANOVAS of percent of respondents that fished by season harvest limit    |
| (Figure 6)                                                                                      |
| Table 6A. Linear regression for estimated bull trout catch by license year (Figure 7)           |
| Table 7A. Linear regression for angler effort versus bull trout catch (Figure 8).               |
| Table 8A. Single factor ANOVAS for estimated number of bull trout caught by season harvest      |
| limit (Figure 9)                                                                                |
| Table 9A. Linear regression analyses for estimated bull trout harvest and total take by license |
| year (Figure 10)                                                                                |
| Table 10A. Single factor ANOVAS for estimated bull trout harvest and take by season harvest     |
| limit (Figure 11)                                                                               |
| Table 11A. Single factor ANOVA for mean length of bull trout by harvest or release (Figure 12). |
|                                                                                                 |
| Table 12A. Linear regressions for Grave Creek bull trout redd counts by harvest management      |
| strategy (Figure 14)                                                                            |
| Table 13A. Linear regressions for Wigwam River bull trout redd counts by harvest management     |
| strategy (Figure 15)                                                                            |
| Table 14A. Single factor ANOVAS for Grave Creek bull trout redd counts by harvest               |
| management strategy (Figure 16)                                                                 |
| Table 15A. Single factor ANOVAS for Wigwam River bull trout redd counts by harvest              |
| management strategy (Figure 17)                                                                 |

| Table 16A. Linear regression for Grave Creek juvenile abundance estimate by year (Figure 18 | 3).  |
|---------------------------------------------------------------------------------------------|------|
|                                                                                             | . 37 |
| Table 17A. Linear regressions for Koocanusa spring gillnet catch of bull trout by year and  |      |
| harvest management strategy (Figure 19).                                                    | . 38 |
| Table 18A. Single factor ANOVA for Koocanusa spring gillnet catch of bull trout by harvest  |      |
| management strategy (Figure 19).                                                            | . 39 |

## LIST OF FIGURES

| Figure 1. Estimated number of anglers and percent of respondents that fished for bull trout at     |
|----------------------------------------------------------------------------------------------------|
| Lake Koocanusa, Montana through the 2020 season                                                    |
| Figure 2. Number of Koocanusa bull trout catch cards issued by year and harvest limit              |
| regulation13                                                                                       |
| Figure 3. Mean number of Koocanusa bull trout catch cards issued by harvest limit regulation.      |
| Error bars represent the 95% CI of the mean14                                                      |
| Figure 4. Estimated effort (total number of angler days) by license year15                         |
| Figure 5. Estimated effort (total number of angler days) by harvest limit regulation. Error bars   |
| represent the 95% CI of the mean and categories with the same letter are not significantly         |
| different from one another                                                                         |
| Figure 6. Angler participation expressed as the percent of respondents that said they fished       |
| Lake Koocanusa by harvest limit regulation. Error bars represent the 95% CI of the mean and        |
| categories with the same letter are not significantly different from one another                   |
| Figure 7. Estimated total bull trout catch by license year17                                       |
| Figure 8. Relationship between angler effort and number of bull trout caught                       |
| Figure 9. Estimated number of bull trout caught by harvest limit regulation. Error bars            |
| represent the 95% CI of the mean and categories with the same letter are not significantly         |
| different from one another                                                                         |
| Figure 10. Estimated total bull trout harvest and estimated total bull trout take by license year. |
|                                                                                                    |
| Figure 11. Estimated total bull trout harvest and estimated total bull trout take by harvest limit |
| regulation. Error bars represent the 95% CI of the mean and categories with the same letter        |
| are not significantly different from one another19                                                 |
| Figure 12. Mean and median length of all reported harvested and released bull trout from Lake      |
| Koocanusa during the permitted fishery. Error bars represent the 95%CI of the mean 20              |
| Figure 13. Length-Frequency of all reported harvested and released bull trout from Lake            |
| Koocanusa during the permitted fishery 21                                                          |
| Figure 14. Number of bull trout redds observed in Grave Creek by year and harvest                  |
| management regulation                                                                              |

| Figure 15. Number of bull trout redds observed in the Wigwam River by year and harvest      |    |
|---------------------------------------------------------------------------------------------|----|
| management regulation.                                                                      | 23 |
| Figure 16. Mean number of bull trout redds observed in Grave Creek by harvest managemen     | t  |
| regulation. Error bars represent the 95% CI of the mean and categories with the same letter |    |
| are not significantly different from one another                                            | 23 |
| Figure 17. Mean number of bull trout redds observed in the Wigwam River by harvest          |    |
| management regulation. Error bars represent the 95% CI of the mean and categories with the  | e  |
| same letter are not significantly different from one another                                | 24 |
| Figure 18. Estimated juvenile bull trout abundance in Grave Creek by year.                  | 25 |
| Figure 19. Mean bull trout catch per gillnet in Lake Koocanusa by year and harvest          |    |
| management regulation.                                                                      | 26 |
| Figure 20. Mean bull trout catch per gillnet in Lake Koocanusa by harvest management        |    |
| regulation. Error bars represent the 95% CI of the mean and categories with the same letter |    |
| are not significantly different from one another                                            | 26 |

#### SUMMARY

In 2004, the U.S. Fish and Wildlife Service authorized limited sport fishing for bull trout *Salvelinus confluentus* at Lake Koocanusa as requested by Montana Fish, Wildlife & Parks after that fishery was deemed to have reached recovery goals. A portion of the permit conditions called for a bull trout permit and catch card system, an angler survey, and development of educational information pertaining to this new fishery. Over the past 18 years, indices of Lake Koocanusa bull trout abundance have informed adaptive management of this unique fishery resulting in various adjustments of harvest limits.

This was the seventeenth year of the catch card surveys. During the 2020 license year, only 43 anglers obtained bull trout permits/catch cards for Lake Koocanusa. By August 2020, we received 22 catch cards and/or surveys (51% return) from anglers. Most (91%) of all catch card holders were Montana residents. The low number of catch cards issued and catch card/survey returns were likely a result of the catch and release only regulation for the 2020 season. Estimated catch of bull trout was only 26 and likely also limited by the low number of participants.

A review of the history of the Lake Koocanusa bull trout fishery indicated several trends as the program matured. Angler interest, effort, and estimated bull trout catch and harvest all declined through time. This is likely the result of the novelty of the fishery decreasing and more restrictive harvest limits in more recent years, suggesting harvest is a significant motivation for participation.

The bull trout population in Lake Koocanusa is closely monitored. In addition to the catch card information, data from redd counts, gillnet surveys, and tributary juvenile bull trout abundance estimates are reviewed annually. The result has been an adaptive management approach where bull trout harvest limits are proactively adjusted based on gathered information. Through the years, Montana Fish, Wildlife & Parks has managed the Lake Koocanusa bull trout fishery more conservatively than required by the U.S. Fish and Wildlife Service in sub permit TE-07753.

Monitoring the bull trout fishery will continue. By combining indices of bull trout abundance with information regarding angler use, Montana Fish, Wildlife & Parks can continue to evaluate relationships between the fishery and the bull trout population. Adaptive harvest management has maintained a limited bull trout sport fishery that will persist as long as monitoring and response efforts remain proactive. The success of this unique fishery helps enhance the understanding of bull trout and encourages stakeholder engagement and informational contributions by the angling public.

#### INTRODUCTION

In 2021, Montana Fish, Wildlife & Parks (MFWP) personnel conducted the seventeenth annual angler mail survey for the recreational bull trout (*Salvelinus confluentus*) fishery on Lake Koocanusa. Because bull trout were listed as a "threatened species" under the Endangered Species Act (ESA) in 1998, this fishery was authorized beginning in 2004 under special permit by the U.S. Fish and Wildlife Service (USFWS).

In 2012, Montana Fish Wildlife & Parks decreased bull trout harvest from one per angler per year to catch and release for several reasons: 1) decreasing mean lengths of bull trout caught and harvested; 2) an unstable trend of redd numbers in the Wigwam River (the major spawning tributary in the British Columbia, Canada (BC) portion Lake Koocanusa bull trout) and Grave Creek (the major spawning tributary in the US portion of Lake Koocanusa); 3) unknown amount of angler harvest in the mainstem and tributaries of the BC portion of Lake Koocanusa (Hensler et al. 2015) We believed this was the prudent course of action even though the USFWS sub permit TE-077533 allowed for harvest of 1,140 bull trout. In 2015 MFWP determined that because redd numbers had stabilized then increased and BC further restricted angling regulations for bull trout, a limited (one bull trout/angler/year) harvest would be re-instituted for Lake Koocanusa during the 2016 season. Declining redd numbers in the Wigwam River and Grave Creek in 2019 prompted a return to catch and release angling only beginning in the 2020 season (Stephens and Benson 2020).

#### BACKGROUND

Bull trout were listed as "threatened" under the Endangered Species Act in 1998. At the time of listing, sport fishing for bull trout had already been discontinued in Montana and was under review, except in Swan Lake which was considered to have a stable population. In 2004, the U.S. Fish and Wildlife Service (USFWS) authorized limited sport fishing for bull trout at Lake Koocanusa as requested by Montana Fish, Wildlife and Parks (MFWP) after the fishery was deemed to have reached recovery goals. The resulting USFWS special permit (TE-077533) included conditions agreed upon by both USFWS and MFWP for authorized take of bull trout in Lake Koocanusa (Hensler and Benson 2005).

One key condition of the USFWS special permit called for development and use of a catch card and angler surveys. The first step in developing a catch card system involved an application process which was available through the Region 1 MFWP office and on MFWP web site. After a completed application was processed, a permit and numbered catch card was issued to each angler. Catch cards requested location, length, and date of each bull trout harvested. Additional supplemental information included total number of days fished, a catch and release log for bull trout, and catch information for rainbow trout.

Anglers were instructed to retain their catch cards until they received a mail survey after the bull trout season. Surveys were mailed to all current catch card holders and in some years, to anglers who had obtained catch cards in previous years. Information gathered from the catch

cards and surveys was used to generate accurate estimates of bull trout catch and harvest from Lake Koocanusa.

Special terms and conditions for FWP's management of the Lake Koocanusa bull trout fishery are found in USFWS permit number: TE077533-1. FWP is authorized to allow individual anglers to intentionally pursue and capture bull trout from Lake Koocanusa with the appropriate permit and catch card. Depending on the status of the bull trout population, FWP may open or close the fishery and adjust harvest limit (maximum 2 per license year – 1 daily). Maximum authorized angler take is 1,140 bull trout from Lake Koocanusa, which includes incidental catch and release mortality calculated as 10 percent of the number of fish caught and released. Anglers may catch and release bull trout year-round, but harvest is restricted to June 1 - through February 28 in years where harvest is allowed.

The level of authorized take is reevaluated annually, and the recovery permit may be amended if bull trout abundance indices, as demonstrated by redd counts, fall below levels that the USFWS considers necessary to ensure local bull trout populations will not be unacceptably impacted. A review of the recovery permit for Lake Koocanusa is triggered when annual redd counts in the index areas of the Kootenai drainage drop below 667 redds in the Wigwam River or 67 redds in Grave Creek.

#### METHODS

Catch cards and/or surveys were issued to anglers for the Koocanusa bull trout fishery in all years from the 2004 through 2020 fishing seasons. Information obtained from catch card and survey returns was used to estimate fishing pressure, catch, and harvest metrics. To estimate fishing pressure, we used the reported effort from catch cards and surveys and assumed anglers not responding to the survey angled for bull trout with the same effort as respondents. Response rates averaged 72 percent for all years (range 38% - 85%).

For much of the long-term investigation of the Koocanusa bull trout fishery, the 2020 license year was not included due to minimal available information. This lack of data was a result of low numbers of catch cards issued, likely due to no allowable bull trout harvest during this year. Furthermore, this was the only year where surveys were not sent to previous year's catch card holders because prior similar efforts (2012 – 2015) were quite costly and cumbersome. Analyses and figures were generated using Microsoft Excel at a significance level of 0.05 unless otherwise noted. Analyses corresponding to figures are found in the appendices.

#### RESULTS

#### **Bull Trout Catch Card/Survey Returns**

Catch card instructions requested that anglers return catch cards after their license expired with the mail survey. Some anglers returned catch cards but not surveys; some returned both; some returned only surveys. We issued 43 catch cards for the 2020 season and by August 2021, we received 22 catch cards/surveys (51% return rate). The low number of catch cards issued and the lower return rate were likely a result of the catch and release only regulations for the 2020 fishing season.

#### **Angler Demographics**

Most anglers that obtained a Lake Koocanusa bull trout catch card for the 2020 season were Montana residents (91%). Anglers from 2 other states and provinces were issued a catch card for Lake Koocanusa. Non-resident anglers were from Idaho and Ohio.

#### **Fishing Pressure Estimates**

After the 2020 season, only 5 of the 22 respondents (22.7%) indicated that they did fish for bull trout. The percent of cardholders that fished began an upward trend likely associated with ability to harvest in 2016 (Figure 1) but declined drastically in 2020 with the elimination of harvest. To estimate total number of angler-days of pressure on bull trout, we used the number of days reported from catch cards and surveys. We assumed anglers not responding to the survey angled for bull trout with the same effort as respondents. During the 2020 season, anglers reported fishing 17 days, and the estimate of total angling effort was 33 days (Table 1).



Figure 1. Estimated number of anglers and percent of respondents that fished for bull trout at Lake Koocanusa, Montana through the 2020 season.

Table 1. Bull trout season angling pressure estimates calculated from catch card and survey results for Lake Koocanusa through the 2020 season.

| Number Angler-Days Fishing Pressure |                          |                                   |                              |        |                          |                                   |                              |  |  |
|-------------------------------------|--------------------------|-----------------------------------|------------------------------|--------|--------------------------|-----------------------------------|------------------------------|--|--|
| Season                              | Number of<br>Respondents | Angler-<br>Days<br>from<br>survey | Estimated<br>Angler-<br>Days | Season | Number of<br>Respondents | Angler-<br>Days<br>from<br>survey | Estimated<br>Angler-<br>Days |  |  |
| 2004                                | 897                      | 1,685                             | 3,483                        | 2013   | 449                      | 1,673                             | 2,370                        |  |  |
| 2005                                | 774                      | 3,285                             | 4,874                        | 2014   | 574                      | 1,099                             | 1,842                        |  |  |
| 2006                                | 590                      | 2,639                             | 3,390                        | 2015   | 536                      | 874                               | 1,202                        |  |  |
| 2007                                | 569                      | 2,963                             | 3,595                        | 2016   | 378                      | 942                               | 1,326                        |  |  |
| 2008                                | 609                      | 3,917                             | 4,607                        | 2017   | 319                      | 681                               | 1,008                        |  |  |
| 2009                                | 691                      | 3,686                             | 4,537                        | 2018   | 319                      | 703                               | 976                          |  |  |
| 2010                                | 497                      | 3,154                             | 3,720                        | 2019   | 327                      | 821                               | 1,165                        |  |  |
| 2011                                | 598                      | 1,933                             | 2,521                        | 2020   | 22                       | 17                                | 33                           |  |  |
| 2012                                | 603                      | 1,456                             | 1,850                        |        |                          |                                   |                              |  |  |

#### Harvest and Catch Estimates

Since there was no harvest for the 2020 season, only catch estimates were calculated. To estimate total catch at Lake Koocanusa for the 2020 season, we calculated the mean catch rate (0.6 bull trout/angler) for anglers who returned catch cards or surveys. The estimated total catch calculated from all surveyed anglers was 26 bull trout (Table 2).

| Season | Bull Trout<br>Harvested | Lower<br>Bound  | Upper<br>Bound | Bull Trout<br>Caught | Lower<br>Bound | Upper<br>Bound | Percent<br>Released |
|--------|-------------------------|-----------------|----------------|----------------------|----------------|----------------|---------------------|
| 2004   | 650 (259)               | 259             | 652            | 2,399 (698)          | *              | *              | 72.1                |
| 2005   | 371 (216)               | . (216) 216 373 |                | 3,595 (2,171)        | 2,171          | 3,611          | 89.7                |
| 2006   | 180 (140)               | 140             | 181            | 1349 (909)           | 909            | 1,353          | 86.6                |
| 2007   | 267 (220)               | 220             | 268            | 1,484 (997)          | 997            | 1,488          | 82                  |
| 2008   | 295 (249)               | 249             | 296            | 1,897 (1,358)        | 1,358          | 1,900          | 84.4                |
| 2009   | 256 (206)               | 206             | 257            | 1,810 (1,247)        | 1,247          | 1,815          | 85.8                |
| 2010   | 163 (138)               | 138             | 164            | 1,568 (1,328)        | 1,328          | 1,573          | 89.6                |
| 2011   | 107 (82)                | 82              | 108            | 1,318 (925)          | 925            | 1,323          | 91.9                |
| 2012   | No harvest              |                 | 742 (608)      | 608                  | 747            | 100            |                     |
| 2013   |                         | No harvest      |                | 965 (728)            | 728            | 981            | 100                 |
| 2014   |                         | No harvest      |                | 1,250 (746)          | 746            | 1,283          | 100                 |
| 2015   |                         | No Harvest      |                | 973 (548)            | 548            | 1.019          | 100                 |
| 2016   | 78 (55)                 | 55              | 79             | 885 (575)            | 575            | 890            | 91.2                |
| 2017   | 68 (46)                 | 46              | 69             | 607 (364)            | 364            | 611            | 87.4                |
| 2018   | 84 (31)                 | 31              | 85             | 997 (336)            | 336            | 1003           | 91.6                |
| 2019   | 145 (58)                | 58              | 146            | 1030 (355)           | 355            | 1035           | 83.7                |
| 2020   |                         | No Harvest      |                | 26 (3)               | 22             | 29             | 100                 |

Table 2. Estimated bull trout harvest (reported harvest) and estimated catch (reported catch) for Lake Koocanusa through the 2020 season.

\*Point estimate expanded from caught vs. released bull trout from catch cards with no variance calculated

#### DISCUSSION

#### **Angler Interest**

During the first few years, anglers expressed high levels of interest in the Koocanusa bull trout fishery based on the large number of catch cards issued. Through time, the number of catch cards issued decreased, even prior to the first change to the harvest limit in 2011 (Figure 2). The number of catch cards issued annually was positively correlated with the season harvest limit suggesting harvest was a significant motivation for participation. Angler interest was significantly higher when the annual limit was two bull trout per year, and significantly lower under catch and release only regulations (Figure 3).



Figure 2. Number of Koocanusa bull trout catch cards issued by year and harvest limit regulation.





#### **Angler Effort**

Similar to interest expressed as the number of catch cards issued, angler effort also decreased through time (Figure 4). Estimated total number of angler days declined from over 4,000 during the first two years to around 1,000 during the most recent catch card surveys. Harvest ability also seemed to affect angler effort. Estimated total angler days were significantly higher in years when the annual harvest limit was two compared to years limited to catch and release only or one bull trout per year (Figure 5). Furthermore, the percent of catch card/survey respondents that did fish Lake Koocanusa was significantly higher when some level of harvest was allowed compared to years of catch and release only (Figure 6).



Figure 4. Estimated effort (total number of angler days) by license year.



Figure 5. Estimated effort (total number of angler days) by harvest limit regulation. Error bars represent the 95% CI of the mean and categories with the same letter are not significantly different from one another.



Figure 6. Angler participation expressed as the percent of respondents that said they fished Lake Koocanusa by harvest limit regulation. Error bars represent the 95% CI of the mean and categories with the same letter are not significantly different from one another.

#### **Bull Trout Catch**

Estimated total number of bull trout caught in Koocanusa declined through time (p < 0.001; Figure 7). This could be the result of several factors including novelty of the fishery and changes to harvest regulations. Anglers expressed high levels of interest in the fishery early on, but the number of catch cards issued waned even prior to the first harvest limit modification. A significant positive relationship exists between angler effort and the number of bull trout caught (p < 0.001; Figure 8). There was also a difference in estimated total bull trout catch between seasonal harvest limit regulations. Like the relationship between season harvest limit and angler effort, significantly more bull trout were caught in years when the harvest limit was two compared to years when the harvest limit was one or zero (Figure 9).



Figure 7. Estimated total bull trout catch by license year.



Figure 8. Relationship between angler effort and number of bull trout caught.



Figure 9. Estimated number of bull trout caught by harvest limit regulation. Error bars represent the 95% CI of the mean and categories with the same letter are not significantly different from one another.

#### **Bull Trout Harvest and Take**

Estimated bull trout harvest and total take also declined with time (p < 0.01; Figure 10). Estimated total take includes incidental catch and release mortality represented as 10-percent of released bull trout. Like interest, effort, and catch, novelty of the fishery likely contributed to higher levels of harvest and total take that diminished through the years. Season harvest limit clearly influenced indices of take. Years with a two fish limit exhibited significantly higher levels of bull trout take compared to years where the season limit was one or zero (p < 0.02; Figure 11). Years where a single bull trout could be harvested resulted in higher take estimates than years of catch and release only.



Figure 10. Estimated total bull trout harvest and estimated total bull trout take by license year.



Figure 11. Estimated total bull trout harvest and estimated total bull trout take by harvest limit regulation. Error bars represent the 95% CI of the mean and categories with the same letter are not significantly different from one another.

#### **Catch Versus Harvest Length Estimates**

Anglers were asked to estimate and record lengths of harvested and released bull trout. Mean length of harvested bull trout was significantly larger than mean length of released bull trout within any given year (e.g., Stephens and Benson 2020; Hensler and Benson 2018). For all years of the Koocanusa bull trout fishery combined, reported mean length of harvested bull trout (26.7"; range 12"-41") was significantly larger than reported mean length of released bull trout (22.5"; range 5"-47") (Figure 12). While anglers caught and released bull trout of all size classes, harvest was targeted at larger bull trout (Figure 13).



Figure 12. Mean and median length of all reported harvested and released bull trout from Lake Koocanusa during the permitted fishery. Error bars represent the 95%CI of the mean.



Figure 13. Length-Frequency of all reported harvested and released bull trout from Lake Koocanusa during the permitted fishery.

#### **Bull Trout Redd Counts**

The Koocanusa bull trout population is closely monitored. A primary metric of bull trout abundance is annual fall redd counts. Bull trout redds are counted in index reaches of the Wigwam River and its tributaries annually by BC personnel, and in index reaches of Grave Creek and its tributaries by MFWP personnel (Dunnigan et al. 2019). Provisions of the USFWS sub permit TE-07735 authorized in 2004 for Koocanusa provided for angler take not to exceed 1,140 bull trout per year and that redd counts not drop below 667 for the Wigwam River or below 67 in Grave Creek. Since the experimental fishery, estimated annual total take (estimated harvest + 10% catch and release mortality) has never reached the 1,140-fish take limit and only exceeded 50 percent of this during the first two years (Figure 10).

Redd counts in both Grave Creek and the Wigwam River have exhibited various trends through time and by harvest management strategy (Figures 14 and 15). Prior to reestablishing bull trout harvest in Lake Koocanusa, redd counts displayed a significant increasing trend. Over the first several years of harvest (2 bull trout/year) redd numbers declined, prompting harvest management to become an adaptive response that set the annual individual angler harvest at one or zero depending on the most recent redd trend information. Under the adaptive harvest management in later years, redd numbers fluctuate but remain somewhat stable with mean values that do not differ significantly from mean redd numbers during earlier periods of no harvest (Figures 16 and 17). Wigwam River redd counts from 2005 were not included in the analysis because the value (785) was a significant outlier caused by a landslide that likely prevented many bull trout from reaching the redd count reference reach.



Figure 14. Number of bull trout redds observed in Grave Creek by year and harvest management regulation.



Figure 15. Number of bull trout redds observed in the Wigwam River by year and harvest management regulation.



Figure 16. Mean number of bull trout redds observed in Grave Creek by harvest management regulation. Error bars represent the 95% CI of the mean and categories with the same letter are not significantly different from one another.



Figure 17. Mean number of bull trout redds observed in the Wigwam River by harvest management regulation. Error bars represent the 95% CI of the mean and categories with the same letter are not significantly different from one another.

#### **Juvenile Bull Trout Estimates**

Population estimates of juvenile bull trout abundance in Grave Creek have been conducted annually beginning in 1997. Estimates were generated using multiple depletion electrofishing techniques in an approximately 185-meter long reference reach. While estimates vary between years, no trend is apparent through time (Figure 18). Juvenile bull trout abundance in Grave Creek has averaged 11 bull trout per 100m<sup>2</sup> across all years and ranged from 6 to 18 bull trout per 100m<sup>2</sup>



Figure 18. Estimated juvenile bull trout abundance in Grave Creek by year.

#### **Koocanusa Spring Gillnet Catch**

MFWP has used experimental gillnets to monitor fish population trends in Lake Koocanusa since 1975. Two sections, Rexford and Canada, are currently sampled in the spring with 14 sinking gillnets in each section although historical effort and sections included additional sites (Dunnigan et al 2019). Fish species abundance is expressed as fish/net and used to assess changes through time.

Koocanusa spring bull trout catch in the gillnets has increased through time (Figure 19). Prior to ESA listing and protection in Montana, catch was stable at relatively low levels. Once fishing for bull trout was eliminated beginning in 1994, bull trout catch per gillnet in Lake Koocanusa displayed a significant increasing trend ( $R^2 = 0.535$ ; p < 0.02). Following the reestablishment of a limited fishery that has been adaptively managed, mean annual bull trout catch in gillnets has remained stable at a level not statistically different from the mean during the period of no bull trout fishing (Figure 20).



Figure 19. Mean bull trout catch per gillnet in Lake Koocanusa by year and harvest management regulation.



Figure 20. Mean bull trout catch per gillnet in Lake Koocanusa by harvest management regulation. Error bars represent the 95% CI of the mean and categories with the same letter are not significantly different from one another.

#### CONCLUSIONS

The Lake Koocanusa bull trout population is quite complex in that most adults rear and mature in the Montana portion of the reservoir while much of the spawning and juvenile rearing occurs in the BC portion of the drainage. Environmental and anthropogenic factors impacting bull trout in such a large system are also complex and poorly understood. MFWP has developed a management strategy for the Lake Koocanusa bull trout recreational fishery that evolved to be more conservative than the limits of the authority statutes set by USFWS sub permit TE-07753. The result has been an adaptive approach where regulations can be modified between years based on the best available knowledge of the bull trout population.

Since the creation of Lake Koocanusa, the bull trout population in this portion of the Kootenai River drainage has become resilient. Likely existing at adult densities much higher than the free-flowing river, the population increased following ESA listing and elimination of targeted angling. Even after limited harvest was established in 2004, indices of bull trout abundance remain stable at levels not different from historic. This stability is a testament to the adaptive management approach where potential impacts of angling pressure are mitigated through harvest regulations, while still allowing a limited recreational fishery for bull trout.

Evaluation of the history of this limited bull trout fishery indicates that angler interest and effort, as well as bull trout catch and take, can be influenced by harvest regulation management. This suggests harvest is a strong motivating factor for anglers participating in the Lake Koocanusa bull trout fishery. By monitoring indices of bull trout abundance through time, harvest regulations can be adjusted to minimize the impacts to the population attributed to the recreational fishery while still allowing opportunity for anglers to target bull trout. The success of this adaptive approach is evident in the persistence and relative stability of the Lake Koocanusa bull trout population and fishery.

Monitoring of the Lake Koocanusa bull trout population will continue. A valuable portion of this monitoring strategy has become the Koocanusa angler survey. By combining standard indices of bull trout abundance with information regarding angler use, MFWP can continue to evaluate the relationship between the fishery and the population. The adaptive harvest management approach employed over the last several years has shown a limited bull trout fishery can persist on Lake Koocanusa as long as monitoring and response efforts remain proactive. The success of this unique fishery not only enhances the understanding of bull trout, but also encourages significant opportunities for stakeholder engagement and informational contributions by the angling public.

#### LITERATURE CITED

- Dunnigan J, J. DeShazer, T. Ostrowski, M. Benner, J. Lampton, L. Garrow, and M. Boyer. 2019. Mitigation For The Construction and Operation of Libby Dam, 1/1/2018 – 12/31/18 Annual Report, 1995-004-00, {259 pages}.
- Hensler, M. and N. Benson. 2005. Angler Survey of Experimental Recreational Bull Trout Fishery in Lake Koocanusa, Montana 2004. Montana Fish, Wildlife & Parks. Kalispell, MT.
- Hensler, M., J. Dunnigan and N. Benson. 2015. Angler Survey of Experimental Recreational Bull Trout Fishery for Lake Koocanusa, Montana 2014 Season. Montana Fish, Wildlife & Parks, Libby, Montana. December 2015.
- Hensler, M. and N. Benson. 2018. Angler Survey of Experimental Recreational Bull Trout
  Fishery for Lake Koocanusa, Montana 2016 Season. Montana Fish, Wildlife & Parks,
  Libby, Montana. March 2018.
- Stephens, B. and N. Benson. 2020. Angler Survey of Experimental Recreational Bull Trout
  Fishery for Lake Koocanusa, Montana through the 2019 Season. Montana Fish, Wildlife
  & Parks, Libby, Montana. August 2020.

#### APPENDICIES

| Table 1A.   | Linear regression | analysis for number     | of catch | cards issued | versus year | during the |
|-------------|-------------------|-------------------------|----------|--------------|-------------|------------|
| first sever | vears of the spec | ial fishery (Figure 2). |          |              |             |            |

| Regression Stat   | ANOVA    |            |    |          |             |        |                |
|-------------------|----------|------------|----|----------|-------------|--------|----------------|
| Multiple R        | 0.972475 |            | df | SS       | MS          | F      | Significance F |
| R Square          | 0.945707 | Regression | 1  | 1340719  | 1340718.893 | 87.094 | 0.000237871    |
| Adjusted R Square | 0.934849 | Residual   | 5  | 76969.96 | 15393.99286 |        |                |
| Standard Error    | 124.0725 | Total      | 6  | 1417689  |             |        |                |
| Observations      | 7        |            |    |          |             |        |                |

## Table 2A. Single factor ANOVAS of catch cards issued by season harvest limit (Figure 3).

| Groups              | Count    | Sum   | Average  | Variance |          |          |
|---------------------|----------|-------|----------|----------|----------|----------|
| Limit 2             | 7        | 12076 | 1725.143 | 236281.5 |          |          |
| Limit 1             | 5        | 2690  | 538      | 19401.5  |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 4110482  | 1     | 4110482  | 27.48944 | 0.000377 | 4.964603 |
| Within Groups       | 1495295  | 10    | 149529.5 |          |          |          |
|                     |          |       |          |          |          |          |
| Groups              | Count    | Sum   | Average  | Variance |          |          |
| Limit 1             | 5        | 2690  | 538      | 19401.5  |          |          |
| Limit 0             | 5        | 373   | 74.6     | 667.3    |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 536848.9 | 1     | 536848.9 | 53.50085 | 8.27E-05 | 5.317655 |
| Within Groups       | 80275.2  | 8     | 10034.4  |          | _        |          |
|                     |          |       |          |          |          |          |
| Groups              | Count    | Sum   | Average  | Variance |          |          |
| Limit 0             | 5        | 373   | 74.6     | 667.3    |          |          |
| Limit 2             | 7        | 12076 | 1725.143 | 236281.5 |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 7945851  | 1     | 7945851  | 55.94259 | 2.11E-05 | 4.964603 |
| Within Groups       | 1420358  | 10    | 142035.8 |          |          |          |

| Regression Sta    | ANOVA    |            |    |          |          |          |                |
|-------------------|----------|------------|----|----------|----------|----------|----------------|
| Multiple R        | 0.914608 |            | df | SS       | MS       | F        | Significance F |
| R Square          | 0.836509 | Regression | 1  | 26542977 | 26542977 | 71.63145 | 7.06618E-07    |
| Adjusted R Square | 0.824831 | Residual   | 14 | 5187689  | 370549.2 |          |                |
| Standard Error    | 608.7276 | Total      | 15 | 31730667 |          |          |                |
| Observations      | 16       |            |    |          |          |          |                |

## Table 3A. Linear regression analysis for angler days versus license year (Figure 4).

### Table 4A. Single factor ANOVAS of total angler days by season harvest limit (Figure 5).

| Groups              | Count    | Sum      | Average  | Variance |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|
| Limit 1             | 5        | 6995.939 | 1399.188 | 412894.8 |          |          |
| Limit 0             | 5        | 6953.853 | 1390.771 | 801285.4 |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 177.1216 | 1        | 177.1216 | 0.000292 | 0.98679  | 5.317655 |
| Within Groups       | 4856721  | 8        | 607090.1 |          |          |          |
|                     |          |          |          |          |          |          |
| Groups              | Count    | Sum      | Average  | Variance |          |          |
| Limit 2             | 7        | 29128.48 | 4161.211 | 335030.8 |          |          |
| Limit 1             | 5        | 6995.939 | 1399.188 | 412894.8 |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 22250590 | 1        | 22250590 | 60.76467 | 1.48E-05 | 4.964603 |
| Within Groups       | 3661764  | 10       | 366176.4 |          |          |          |
|                     |          |          |          |          |          |          |
| Groups              | Count    | Sum      | Average  | Variance |          |          |
| Limit 0             | 5        | 6953.853 | 1390.771 | 801285.4 |          |          |
| Limit 2             | 7        | 29128.48 | 4161.211 | 335030.8 |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 22386412 | 1        | 22386412 | 42.92427 | 6.46E-05 | 4.964603 |
| Within Groups       | 5215327  | 10       | 521532.7 |          |          |          |

| Groups              | Count    | Sum      | Average  | Variance |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|
| Limit 1             | 5        | 255.88   | 51.17601 | 14.41028 |          |          |
| Limit 0             | 5        | 154.8823 | 30.97647 | 50.1085  |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 1020.054 | 1        | 1020.054 | 31.62036 | 0.000497 | 5.317655 |
| Within Groups       | 258.0751 | 8        | 32.25939 |          |          |          |
|                     |          |          |          |          |          |          |
| Groups              | Count    | Sum      | Average  | Variance |          |          |
| Limit 2             | 7        | 325.1253 | 46.44647 | 78.09694 |          |          |
| Limit 1             | 5        | 255.88   | 51.17601 | 14.41028 |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 65.24154 | 1        | 65.24154 | 1.239808 | 0.291556 | 4.964603 |
| Within Groups       | 526.2228 | 10       | 52.62228 |          |          |          |
|                     |          |          |          |          |          |          |
| Groups              | Count    | Sum      | Average  | Variance |          |          |
| Limit 0             | 5        | 154.8823 | 30.97647 | 50.1085  |          |          |
| Limit 2             | 7        | 325.1253 | 46.44647 | 78.09694 |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 698.0196 | 1        | 698.0196 | 10.43353 | 0.009019 | 4.964603 |
| Within Groups       | 669.0156 | 10       | 66.90156 |          |          |          |

Table 5A. Single factor ANOVAS of percent of respondents that fished by season harvest limit (Figure 6).

Table 6A. Linear regression for estimated bull trout catch by license year (Figure 7).

| Regression Sta    | ANOVA    |            |    |         |         |          |                |  |
|-------------------|----------|------------|----|---------|---------|----------|----------------|--|
| Multiple R        | 0.750993 |            | df | SS      | MS      | F        | Significance F |  |
| R Square          | 0.563991 | Regression | 1  | 4722957 | 4722957 | 18.10943 | 0.000799544    |  |
| Adjusted R Square | 0.532847 | Residual   | 14 | 3651214 | 260801  |          |                |  |
| Standard Error    | 510.6868 | Total      | 15 | 8374171 |         |          |                |  |
| Observations      | 16       |            |    |         |         |          |                |  |

Table 7A. Linear regression for angler effort versus bull trout catch (Figure 8).

| Regression Sta    | ANOVA    |            |    |          |          |          |                |  |
|-------------------|----------|------------|----|----------|----------|----------|----------------|--|
| Multiple R        | 0.963154 |            | df | SS       | MS       | F        | Significance F |  |
| R Square          | 0.927665 | Regression | 1  | 38330085 | 38330085 | 192.3676 | 1.42834E-09    |  |
| Adjusted R Square | 0.860998 | Residual   | 15 | 2988816  | 199254.4 |          |                |  |
| Standard Error    | 446.3792 | Total      | 16 | 41318901 |          |          |                |  |
| Observations      | 16       |            |    |          |          |          |                |  |

| Groups              | Count    | Sum   | Average  | Variance |          |          |
|---------------------|----------|-------|----------|----------|----------|----------|
| Limit 2             | 7        | 14192 | 2027.429 | 601818.3 |          |          |
| Limit 1             | 5        | 4837  | 967.4    | 66098.3  |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 3277343  | 1     | 3277343  | 8.456999 | 0.015616 | 4.964603 |
| Within Groups       | 3875303  | 10    | 387530.3 |          |          |          |
|                     |          |       |          |          |          |          |
| Groups              | Count    | Sum   | Average  | Variance |          |          |
| Limit 1             | 5        | 4837  | 967.4    | 66098.3  |          |          |
| Limit 0             | 4        | 3930  | 982.5    | 43264.33 |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 506.6889 | 1     | 506.6889 | 0.008998 | 0.927087 | 5.591448 |
| Within Groups       | 394186.2 | 7     | 56312.31 |          |          |          |
|                     |          |       |          |          |          |          |
| Groups              | Count    | Sum   | Average  | Variance |          |          |
| Limit 0             | 4        | 3930  | 982.5    | 43264.33 |          |          |
| Limit 2             | 7        | 14192 | 2027.429 | 601818.3 |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 2779320  | 1     | 2779320  | 6.686947 | 0.02941  | 5.117355 |
| Within Groups       | 3740703  | 9     | 415633.6 |          |          |          |

Table 8A. Single factor ANOVAS for estimated number of bull trout caught by season harvest limit (Figure 9).

Table 9A. Linear regression analyses for estimated bull trout harvest and total take by license year (Figure 10).

| Estimated Bull Trout Harvest |          |            |           |               |          |          |                |  |  |  |  |
|------------------------------|----------|------------|-----------|---------------|----------|----------|----------------|--|--|--|--|
| Regression Stati             | stics    |            | ANOVA     |               |          |          |                |  |  |  |  |
| Multiple R                   | 0.735354 |            | df        | SS            | MS       | F        | Significance F |  |  |  |  |
| R Square                     | 0.540745 | Regression | 1         | 243148.9      | 243148.9 | 16.48414 | 0.001169979    |  |  |  |  |
| Adjusted R Square            | 0.507941 | Residual   | 14        | 206506.6      | 14750.47 |          |                |  |  |  |  |
| Standard Error               | 121.4515 | Total      | 15        | 449655.5      |          |          |                |  |  |  |  |
| Observations                 | 16       |            |           |               |          |          |                |  |  |  |  |
|                              |          |            |           |               |          |          |                |  |  |  |  |
|                              |          | Estimated  | d Total E | Bull Trout Ta | ke       |          |                |  |  |  |  |
| Regression Stati             | stics    |            | ANOVA     |               |          |          |                |  |  |  |  |
| Multiple R                   | 0.779936 |            | df        | SS            | MS       | F        | Significance F |  |  |  |  |
| R Square                     | 0.6083   | Regression | 1         | 434816.9      | 434816.9 | 21.74161 | 0.000366096    |  |  |  |  |
| Adjusted R Square            | 0.580321 | Residual   | 14        | 279990.2      | 19999.3  |          |                |  |  |  |  |
| Standard Error               | 141.4189 | Total      | 15        | 714807.1      |          |          |                |  |  |  |  |
| Observations                 | 16       |            |           |               |          |          |                |  |  |  |  |

Table 10A. Single factor ANOVAS for estimated bull trout harvest and take by season harvest limit (Figure 11).

|                     |          | Estimated B | ull Trout Tal | ke       |          |          |
|---------------------|----------|-------------|---------------|----------|----------|----------|
| Groups              | Count    | Sum         | Average       | Variance |          |          |
| Limit 2             | 7        | 3374        | 482           | 40467.02 |          |          |
| Limit 1             | 5        | 917.2194    | 183.4439      | 2234.5   |          |          |
| ANOVA               |          |             |               |          |          |          |
| Source of Variation | SS       | df          | MS            | F        | P-value  | F crit   |
| Between Groups      | 259979.3 | 1           | 259979.3      | 10.32729 | 0.009275 | 4.964603 |
| Within Groups       | 251740.1 | 10          | 25174.01      |          |          |          |
|                     |          |             |               |          |          |          |
| Groups              | Count    | Sum         | Average       | Variance |          |          |
| Limit 1             | 5        | 917.2194    | 183.4439      | 2234.5   |          |          |
| Limit 0             | 4        | 393         | 98.25         | 432.6433 |          |          |
| ANOVA               |          |             |               |          |          |          |
| Source of Variation | SS       | df          | MS            | F        | P-value  | F crit   |
| Between Groups      | 16128.88 | 1           | 16128.88      | 11.02999 | 0.012745 | 5.591448 |
| Within Groups       | 10235.93 | 7           | 1462.275      |          |          |          |
|                     |          |             |               |          |          |          |
| Groups              | Count    | Sum         | Average       | Variance |          |          |
| Limit 0             | 4        | 393         | 98.25         | 432.6433 |          |          |
| Limit 2             | 7        | 3374        | 482           | 40467.02 |          |          |
| ANOVA               |          |             |               |          |          |          |
| Source of Variation | SS       | df          | MS            | F        | P-value  | F crit   |
| Between Groups      | 374854   | 1           | 374854        | 13.82091 | 0.004788 | 5.117355 |
| Within Groups       | 244100.1 | 9           | 27122.23      |          |          |          |
|                     | Es       | timated Bul | l Trout Harv  | vest     |          |          |
| Groups              | Count    | Sum         | Average       | Variance |          |          |
| Limit 2             | 7        | 2182        | 311.7143      | 27133.24 |          |          |
| Limit 1             | 5        | 481.6882    | 96.33763      | 935.742  |          |          |
| ANOVA               |          |             |               |          |          |          |
| Source of Variation | SS       | df          | MS            | F        | P-value  | F crit   |
| Between Groups      | 135295.7 | 1           | 135295.7      | 8.1238   | 0.017243 | 4.964603 |
| Within Groups       | 166542.4 | 10          | 16654.24      |          |          |          |
|                     |          |             |               |          |          |          |
| Groups              | Count    | Sum         | Average       | Variance |          |          |
| Limit 1             | 5        | 481.6882    | 96.33763      | 935.742  |          |          |
| Limit 0             | 4        | 0           | 0             | 0        |          |          |
| ANOVA               |          |             |               |          |          |          |
| Source of Variation | SS       | df          | MS            | F        | P-value  | F crit   |
| Between Groups      | 20624.31 | 1           | 20624.31      | 38.57104 | 0.000441 | 5.591448 |
| Within Groups       | 3742.968 | 7           | 534.7097      |          |          |          |
|                     |          |             |               |          |          |          |

| Groups              | Count    | Sum      | Average  | Variance |             |          |
|---------------------|----------|----------|----------|----------|-------------|----------|
| Harvested           | 1779     | 47578    | 26.74424 | 16.22624 |             |          |
| Released            | 7813     | 175554.3 | 22.46952 | 27.13859 |             |          |
| ANOVA               |          |          |          |          |             |          |
| Source of Variation | SS       | df       | MS       | F        | P-value     | F crit   |
| Between Groups      | 26478.93 | 1        | 26478.93 | 1054.289 | 1.6161E-219 | 3.842429 |
| Within Groups       | 240856.9 | 9590     | 25.11543 |          |             |          |

Table 11A. Single factor ANOVA for mean length of bull trout by harvest or release (Figure 12).

Table 12A. Linear regressions for Grave Creek bull trout redd counts by harvest management strategy (Figure 14).

|                   |          |            | Protected | d (0/yr) |          |          |                |  |  |  |
|-------------------|----------|------------|-----------|----------|----------|----------|----------------|--|--|--|
| Regression Sta    | tistics  |            |           |          | ANOVA    |          |                |  |  |  |
| Multiple R        | 0.961127 |            | df        | SS       | MS       | F        | Significance F |  |  |  |
| R Square          | 0.923766 | Regression | 1         | 37321.52 | 37321.52 | 72.70483 | 0.000142601    |  |  |  |
| Adjusted R Square | 0.91106  | Residual   | 6         | 3079.976 | 513.3294 |          |                |  |  |  |
| Standard Error    | 22.65677 | Total      | 7         | 40401.5  |          |          |                |  |  |  |
| Observations      | 8        |            |           |          |          |          |                |  |  |  |
|                   |          |            |           |          |          |          |                |  |  |  |
| Harvest (2/yr)    |          |            |           |          |          |          |                |  |  |  |
| Regression Sta    | tistics  |            |           |          | ANOVA    |          |                |  |  |  |
| Multiple R        | 0.266555 |            | df        | SS       | MS       | F        | Significance F |  |  |  |
| R Square          | 0.071051 | Regression | 1         | 603.5714 | 603.5714 | 0.382429 | 0.563385914    |  |  |  |
| Adjusted R Square | -0.11474 | Residual   | 5         | 7891.286 | 1578.257 |          |                |  |  |  |
| Standard Error    | 39.72728 | Total      | 6         | 8494.857 |          |          |                |  |  |  |
| Observations      | 7        |            |           |          |          |          |                |  |  |  |
|                   |          |            |           |          |          |          |                |  |  |  |
|                   |          | A          | daptive   | (0-1/yr) |          |          |                |  |  |  |
| Regression Sta    | tistics  |            |           |          | ANOVA    |          |                |  |  |  |
| Multiple R        | 0.257806 |            | df        | SS       | MS       | F        | Significance F |  |  |  |
| R Square          | 0.066464 | Regression | 1         | 281.6    | 281.6    | 0.569565 | 0.472061518    |  |  |  |
| Adjusted R Square | -0.05023 | Residual   | 8         | 3955.3   | 494.4125 |          |                |  |  |  |
| Standard Error    | 22.23539 | Total      | 9         | 4236.9   |          |          |                |  |  |  |
| Observations      | 10       |            |           |          |          |          |                |  |  |  |

|                       |          |            | Protected   | (0/yr)   |          |          |                |  |  |
|-----------------------|----------|------------|-------------|----------|----------|----------|----------------|--|--|
| Regression Stat       | tistics  |            |             | A        | NOVA     |          |                |  |  |
| Multiple R            | 0.979215 |            | df          | SS       | MS       | F        | Significance F |  |  |
| R Square              | 0.958862 | Regression | 1           | 3117216  | 3117216  | 163.1603 | 4.17678E-06    |  |  |
| Adjusted R Square     | 0.952986 | Residual   | 7           | 133736.6 | 19105.23 |          |                |  |  |
| Standard Error        | 138.2217 | Total      | 8           | 3250953  |          |          |                |  |  |
| Observations          | 9        |            |             |          |          |          |                |  |  |
|                       |          |            |             |          |          |          |                |  |  |
|                       |          |            | Harvest (2  | 2/yr)    |          |          |                |  |  |
| Regression Statistics | 5        |            | ANOVA       |          |          |          |                |  |  |
| Multiple R            | 0.87568  |            | df          | SS       | MS       | F        | Significance F |  |  |
| R Square              | 0.766815 | Regression | 1           | 676601.9 | 676601.9 | 13.15377 | 0.022222544    |  |  |
| Adjusted R Square     | 0.708519 | Residual   | 4           | 205751.4 | 51437.86 |          |                |  |  |
| Standard Error        | 226.7992 | Total      | 5           | 882353.3 |          |          |                |  |  |
| Observations          | 6        |            |             |          |          |          |                |  |  |
|                       |          |            |             |          |          |          |                |  |  |
|                       |          |            | Adaptive (0 | )-1/yr)  |          |          |                |  |  |
| Regression Statistics | 5        |            |             | А        | NOVA     |          |                |  |  |
| Multiple R            | 0.504825 |            | df          | SS       | MS       | F        | Significance F |  |  |
| R Square              | 0.254848 | Regression | 1           | 176240.1 | 176240.1 | 3.078079 | 0.113248567    |  |  |
| Adjusted R Square     | 0.172054 | Residual   | 9           | 515308.6 | 57256.52 |          |                |  |  |
| Standard Error        | 239.2833 | Total      | 10          | 691548.7 |          |          |                |  |  |
| Observations          | 11       |            |             |          |          |          |                |  |  |

Table 13A. Linear regressions for Wigwam River bull trout redd counts by harvest management strategy (Figure 15).

| Groups              | Count    | Sum  | Average  | Variance |          |          |
|---------------------|----------|------|----------|----------|----------|----------|
| protected           | 8        | 998  | 124.75   | 5771.643 |          |          |
| 2/yr                | 7        | 1149 | 164.1429 | 1415.81  |          |          |
| ANOVA               |          |      |          |          |          |          |
| Source of Variation | SS       | df   | MS       | F        | P-value  | F crit   |
| Between Groups      | 5793.376 | 1    | 5793.376 | 1.540276 | 0.236506 | 4.667193 |
| Within Groups       | 48896.36 | 13   | 3761.258 |          |          |          |
|                     |          |      |          |          |          |          |
| Groups              | Count    | Sum  | Average  | Variance |          |          |
| 2/yr                | 7        | 1149 | 164.1429 | 1415.81  |          |          |
| managed             | 10       | 831  | 83.1     | 470.7667 |          |          |
| ANOVA               |          |      |          |          |          |          |
| Source of Variation | SS       | df   | MS       | F        | P-value  | F crit   |
| Between Groups      | 27044.48 | 1    | 27044.48 | 31.86262 | 4.66E-05 | 4.543077 |
| Within Groups       | 12731.76 | 15   | 848.7838 |          |          |          |
|                     |          |      |          |          |          |          |
| Groups              | Count    | Sum  | Average  | Variance |          |          |
| managed             | 10       | 831  | 83.1     | 470.7667 |          |          |
| protected           | 8        | 998  | 124.75   | 5771.643 |          |          |
| ANOVA               |          |      |          |          |          |          |
| Source of Variation | SS       | df   | MS       | F        | P-value  | F crit   |
| Between Groups      | 7709.878 | 1    | 7709.878 | 2.763496 | 0.1159   | 4.493998 |
| Within Groups       | 44638.4  | 16   | 2789.9   |          |          |          |

Table 14A. Single factor ANOVAS for Grave Creek bull trout redd counts by harvest management strategy (Figure 16).

| Table 15A. 🗄 | Single factor ANOVAS for | Wigwam | River b | ull trout | redd | counts l | by harve | est |
|--------------|--------------------------|--------|---------|-----------|------|----------|----------|-----|
| managemer    | nt strategy (Figure 17). |        |         |           |      |          |          |     |

| Groups              | Count    | Sum   | Average  | Variance |          |          |
|---------------------|----------|-------|----------|----------|----------|----------|
| protected           | 9        | 9521  | 1057.889 | 406369.1 |          |          |
| 2/yr                | 6        | 10840 | 1806.667 | 176470.7 |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 2018405  | 1     | 2018405  | 6.348252 | 0.025625 | 4.667193 |
| Within Groups       | 4133306  | 13    | 317946.6 |          |          |          |
|                     |          |       |          |          |          |          |
| Groups              | Count    | Sum   | Average  | Variance |          |          |
| 2/yr                | 6        | 10840 | 1806.667 | 176470.7 |          |          |
| managed             | 11       | 14493 | 1317.545 | 69154.87 |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 928812.4 | 1     | 928812.4 | 8.852003 | 0.009437 | 4.543077 |
| Within Groups       | 1573902  | 15    | 104926.8 |          |          |          |
|                     |          |       |          |          |          |          |
| Groups              | Count    | Sum   | Average  | Variance |          |          |
| managed             | 11       | 14493 | 1317.545 | 69154.87 |          |          |
| protected           | 9        | 9521  | 1057.889 | 406369.1 |          |          |
| ANOVA               |          |       |          |          |          |          |
| Source of Variation | SS       | df    | MS       | F        | P-value  | F crit   |
| Between Groups      | 333736.6 | 1     | 333736.6 | 1.523717 | 0.232931 | 4.413873 |
| Within Groups       | 3942502  | 18    | 219027.9 |          |          |          |

## Table 16A. Linear regression for Grave Creek juvenile abundance estimate by year (Figure 18).

| Regression Sta    | ANOVA    |            |    |          |          |          |                |
|-------------------|----------|------------|----|----------|----------|----------|----------------|
| Multiple R        | 0.01671  |            | df | SS       | MS       | F        | Significance F |
| R Square          | 0.000279 | Regression | 1  | 0.052345 | 0.052345 | 0.005865 | 0.939677699    |
| Adjusted R Square | -0.04733 | Residual   | 21 | 187.4095 | 8.924263 |          |                |
| Standard Error    | 2.98735  | Total      | 22 | 187.4619 |          |          |                |
| Observations      | 23       |            |    |          |          |          |                |

| ALL YEARS             |           |            |          |          |          |          |                |  |  |  |
|-----------------------|-----------|------------|----------|----------|----------|----------|----------------|--|--|--|
| Regression Sta        | ANOVA     |            |          |          |          |          |                |  |  |  |
| Multiple R            | 0.610158  |            | df       | SS       | MS       | F        | Significance F |  |  |  |
| R Square              | 0.372293  | Regression | 1        | 41.96187 | 41.96187 | 23.72403 | 1.78595E-05    |  |  |  |
| Adjusted R Square     | 0.356601  | Residual   | 40       | 70.74997 | 1.768749 |          |                |  |  |  |
| Standard Error        | 1.329943  | Total      | 41       | 112.7118 |          |          |                |  |  |  |
| Observations          | 42        |            |          |          |          |          |                |  |  |  |
|                       |           |            |          |          |          |          |                |  |  |  |
|                       |           |            | NOT REST | RICTED   |          |          |                |  |  |  |
| Regression Sta        | tistics   |            |          | A        | NOVA     |          |                |  |  |  |
| Multiple R            | 0.258301  |            | df       | SS       | MS       | F        | Significance F |  |  |  |
| R Square              | 0.066719  | Regression | 1        | 0.239567 | 0.239567 | 0.857868 | 0.37258891     |  |  |  |
| Adjusted R Square     | -0.011054 | Residual   | 12       | 3.3511   | 0.279258 |          |                |  |  |  |
| Standard Error        | 0.528449  | Total      | 13       | 3.590667 |          |          |                |  |  |  |
| Observations          | 14        |            |          |          |          |          |                |  |  |  |
|                       |           |            |          |          |          |          |                |  |  |  |
|                       |           |            | PROTEC   | CTED     |          |          |                |  |  |  |
| Regression Sta        | tistics   | ANOVA      |          |          |          |          |                |  |  |  |
| Multiple R            | 0.731487  |            | df       | SS       | MS       | F        | Significance F |  |  |  |
| R Square              | 0.535074  | Regression | 1        | 9.909943 | 9.909943 | 9.207021 | 0.016202922    |  |  |  |
| Adjusted R Square     | 0.476958  | Residual   | 8        | 8.61077  | 1.076346 |          |                |  |  |  |
| Standard Error        | 1.037471  | Total      | 9        | 18.52071 |          |          |                |  |  |  |
| Observations          | 10        |            |          |          |          |          |                |  |  |  |
|                       |           |            |          |          |          |          |                |  |  |  |
| MANAGED               |           |            |          |          |          |          |                |  |  |  |
| Regression Statistics |           | ANOVA      |          |          |          |          |                |  |  |  |
| Multiple R            | 0.32871   |            | df       | SS       | MS       | F        | Significance F |  |  |  |
| R Square              | 0.10805   | Regression | 1        | 2.705153 | 2.705153 | 1.938228 | 0.18291047     |  |  |  |
| Adjusted R Square     | 0.052303  | Residual   | 16       | 22.33094 | 1.395684 |          |                |  |  |  |
|                       | 0.052505  |            |          |          |          |          |                |  |  |  |
| Standard Error        | 1.181391  | Total      | 17       | 25.0361  |          |          |                |  |  |  |

Table 17A. Linear regressions for Koocanusa spring gillnet catch of bull trout by year and harvest management strategy (Figure 19).

Table 18A. Single factor ANOVA for Koocanusa spring gillnet catch of bull trout by harvest management strategy (Figure 19).

| Groups              | Count    | Sum      | Average  | Variance |          |          |
|---------------------|----------|----------|----------|----------|----------|----------|
| not restricted      | 14       | 20.82586 | 1.487562 | 0.276205 |          |          |
| protected           | 10       | 41.07261 | 4.107261 | 2.057857 |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 40.03316 | 1        | 40.03316 | 39.83151 | 2.37E-06 | 4.30095  |
| Within Groups       | 22.11138 | 22       | 1.005063 |          |          |          |
|                     |          |          |          |          |          |          |
| Groups              | Count    | Sum      | Average  | Variance |          |          |
| protected           | 10       | 41.07261 | 4.107261 | 2.057857 |          |          |
| managed             | 18       | 74.78286 | 4.154603 | 1.472712 |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 0.014408 | 1        | 0.014408 | 0.0086   | 0.926822 | 4.225201 |
| Within Groups       | 43.55681 | 26       | 1.675262 |          |          |          |
|                     |          |          |          |          |          |          |
| Groups              | Count    | Sum      | Average  | Variance |          |          |
| managed             | 18       | 74.78286 | 4.154603 | 1.472712 |          |          |
| not restricted      | 14       | 20.82586 | 1.487562 | 0.276205 |          |          |
| ANOVA               |          |          |          |          |          |          |
| Source of Variation | SS       | df       | MS       | F        | P-value  | F crit   |
| Between Groups      | 56.01575 | 1        | 56.01575 | 58.70285 | 1.52E-08 | 4.170877 |
| Within Groups       | 28.62676 | 30       | 0.954225 |          |          |          |