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Abstract

The validity of paremelric versus nonparametvic statistical
analysis of gill net catch data is briefly discussed. It is concluded
that the nonparametric ranking tests of Mann-Whitney and Kruskal-Wallis
are the best methods available for analyzing such data. The theory
and conduct of these tests are explained with the aid of simpie
exampies. Also described are computational checks, various ways of
handling tied ohservations, limitations on the use of the methods,
and some peculiarities not associated with the more common parametric
methods. Numerous examples are provided in order o itlustrate

pertinent points.

Introduction

Gi11 net sampling is widely used by fisheries biologists to
obtain a variety of information about fish populations. One standard
use is to gather information about the relative size of a fish
population. Although such data cannot be manipulated so as to produce
an estimate of the actuail number of fish in a population, it neverthe-
Tess has seemed reasonable that, under the appropriate conditions,
some kind of positive relationship should exist between the density

of fish in a body of water and the number of fish caught in a series

l?hﬁs study was part of Montana Federal Ald in Fish Restoration Project
F-d-R.
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of gill net sets that have been fished in that body of water.
Furthermore, even though more refined methods of population
<ize estimation do exist, physical and/or economic Timitations
often conspire to make gill netting the only practical means
available for such work.

Since gill net catches do provide only an index to population
size, the primary value of such Tigures is in reference to
similar figures for other populations of fish {where "other
populations” may represent fish in different bodies of water,
in the same body of water at different locations, or in the
same location at different times). That is, can we infer that
population A is greater or smaller (or more or less dense) than
population B, based on the gill net catches availabie from
each? Clearly, this is the kind of situation in which statistical
anaiysis was designed to piay an important role, aithough &
review of recent literature indicates that, with the exception
of Moyle's pioneering work {Moyle, 1950; Moyle and Lound,

1960), this role has not received the attention that it should.

Statistical methods of analysis are conventionally divided
into two broad categories. First, and far more popular, are
the parametric methods. These are related by the fact that
they all assume some kind of model and/or frequency distribution
associated in some way with the population of interest. As a

resuit, they are intimately concerned with estimating the
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parameters that describe the assumed models and distributions.

ysually, they are aiso constrained by several additional assumptions,

Lo
4]
.

S

some of which concern the population, others the sample.
Second are the nonparametric methods. These do not specitfy a
particular kind of model or narent frequency distribution, nor

do they normally require s$0 many other vestrictions.

Darameiric Methods

Most of the conventionai methods of parametric statistical
analysis are based on so-called “normal theory.® This theory
is predicated partly on the foliowing three assumptions: {1}
the attribute of interest {e.g., length, speed, temperature)
cecurs on a continuous scale of measure, rather than in discrete
categories {e.g., as with counts): (2] tne essentially infinite
population of such attributes has a2 "normal’ frequency distribution
{Figure 1); ana (3) the standard deviation of the distribution
is independent of the mean. Under these conditions, and
several others, estimates of population parameters and tests of
hypotheses have been developed that are the best possible.

There are several reascns why statistical analysis in

terms of normal theory enjoys such great ppularity. Foremost

o

among these is the fact that, when all assumptions are satisfied,
ne nonnovmal method is as good. Second, the methods are "robust”.
This means that the power and efficiency of tests of hypotheses
are not significantly reduced by reasonably small departures

from the required assumptions. Third, a wide variety of parent
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distributions from many different fields of study can be reasonably
well approximated by the normal. Fourth, even if a parent
distribution is not normal, the distribution of the sample mean
approaches the normal with increasing sample size, thus preserving
the validity of much of the theory.

The gill netting problems that Moyle attempted to resoive
concern assumptions {2} and (3) listed previously. First, in
the majority of series of catches, the frequency distribution
of catch data is highly skewed, i.e., nonnormal (Figure 2).
Second, the standard deviation is positively related to the
mean (Figure 3)., Moyle did not mention that assumption (1)
also is not satisfied by gill net data.

Based on his comprehensive review of the s%tuétion, Moyle
conciuded that statistical analysis of gill net catches in
terms of an assumed normal distribution is not legitimate.

This means that it would not be valid to use the t test to
compare the mean catches of two gill net series, or to use
tabulated t values to impose confidence Timits on these mean
catches. 1 concur in his evaluation.

Moyle and Lound {1960} proposed two splutions to the probiems
stated above: one parametric, the other nonparametric. The
parametric approach consists of assuming that gill net catches
follow a negative binomial distribution. Under this assumption, a
suitable transformation may be appiied to the individual catches so
that the resulting data are distributed more nearly normaily.

Thus, conventional confidence 1imits and t tests may be calculated.
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There are fwo drawbacks to this proposal. First, even though
many series of gill net catches do satisfactorily approximate a
negative binomial distribution, the fact remains that a
significant number dc not. In other words, the negative binomial
distribution is considerably more applicable than the normal
distribution, but far from universally so. Second, the estimator
of the dispersion index {17k}, which plays a central role in the
theory of the negative binomial function, ig simple to calculate,
but does not provide the best possible estimate. The best
estimate can only be obiained as the root of an explicitiy
insoluble equation. This can, of course, be found iteratively,
hut without a computer it is nct practical to do so.

As a result of the foregoing, I feel that we may Justifiabiy
conclude that parametric statistical analysis is inappropriate
in general for use on gill net catch data. Rather than use methods
that, at best, fit the situation only part of the time, or
spend more time searching for other theoretical distributions
that might conceivably fit all the data, 9%t seems more logical to
investigate the possibility that some standard nonparameiric

methed might be suitable for our needs.

Nonparametric Methods

Nonparametric methods possess a number of features that make
them very attractive alternatives 1o parametric methods {Siegel,

1956). Four of these that are sarticularly relevant to our problem
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of gill net catches are: (1) no particular form of the parent
distribution is assumed; (2) both continuous and discrete data

are equally well handied; (3) several tests are far superior to
normal theory tests under conditions where the latter are
inappropriate, whereas they are only slightly inferior where normal
tests are appropriate; and (4) exact tests exist for any sample
size, no matter how small.

The nonparametric method proposed for gill net catch analysis
by Moyle and Lound (1960} is based on use of the median {rather
than the mean) catch of a series. In addition te the advantages
of a nonparametric method. the median method possesses three useful
features: (1) confidence limits may be constructed about the
median, although without appropriate tables this may be quite
tedious; (2) the test of a difference between sample medians is
simple to calculate and understand; and {3) the test may be applied
to any number of samples. The primary disadvantage of the method
is that it does not provide the most efficient analysis of the
data possible. That is, other methods exist that extract more
information from the samples. and thus discriminate more
effectively between them. The purpose of this paper is to promote

the understanding and use of these methods.
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Ranking Tests

The methods that appear to be best suited for use on giil net

catch data belong to the ¢lass of so-calied ranking tests.

one that is probably most appropriate

This test may be applied to a
{i.e., two or more). Another

Wnitney U test [Siegel, 1956)

{Alder and Roessier, 1964}, is a s
is applicable to two-sample comparisons only.
designed specifically to discriminate between

drawn from populations with different central

less of the dispersion around the

& basgic feature of the method

ghservations from smallest to largest, and

ranks according to this orgering.
chservations from all sampies are
group. The assumption is that if
from the same population {or from
frequency distribution}, then all

be similar.

The

g the Kruskal-Wallis H test.

comparison of any number of samples
test, known variously as ths Mann-

or the Wilcoxon two-sample test

pecial case of the H test that
These tests are
samples that are
tendencies, regard-
central fendencies.

s is the ordering of the sample
the assignment of

In this procedures, all
combined and treated as one
all samplies have been selected
oopulations with the same

of the sample mean ranks should

On the contrary, if the samples have been selected

from populations with different freguency distributions, then

we would expect these differences

Mean ranks.

+0 be reflected in the sample
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Some simple examples will help to clarify the foregoing ideas
and provide a basis for discussion of the tests themselives.
Example 1. The purpose of this example is to illustrate the ranking

of observations from two samples. The data were chosen to

Sample 1 Samplie 2

Observation Rank Observation Rank

7 2 6 1

10 5 8 3

13 8 9 4

16 11 11 6

19 14 12 7

14 9

15 10

17 12

i8 13

20 15

Total 65 40 130 80
Mean 13 8 13 g

demonstrate the consequences, on the average. of drawing two
samples from the same population: equality of sample mean observa-
tions (13), and equality of sample mean ranks (8). Normally, in
any given instance, sampling variability would prevent two such

samples from turning out precisely this way (Exampie VI, Il1lustrative
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Examples). MNote that the difference between the sums of the
sample ranks {40 and 80) is not a reliable indicator of a
population difference, any more than is the difference between
the sums of the sampie ohservations. This follows from the fact
that the two sample sizes are unequal.

Example 2. Assume that two series of gill net sets result in the

catches displayed below:

Rank Order . . s
Position 1 2 3 4 5 5 7 B 9 10 11 12 13 14 15 16

Catch 00123 45 6 7 8 9 10 11 12 13 14 15

These data are already combined and ranked, those representing
Sample 1 having been underlined. Assume further that the following
hypotheses were proposed prior to selecting the samples:
Hg:  The two nopulations are equally abundant (dense)
Hy Population 1 is less abundant [dense) than Population Z.
In order to test the null hypothesis, we must determine Tirst, the
total number of ways that the seven Sample 1 catches can occur among
the sixteen rank positions available; and second, the number
of ways that the Sample 1 catches can occur in positions as Tow

as or lower than thoss actually shown.

The first figure is

16 161 o
{ 7} = -7 LA
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The second is obtained by actually listing each possibility
and counting them. This task is simplified somewhat if it is
done in terms of the sum of the ranks; that is, we must find each
rank ordering whose rank sum is Tess than or equal to the rank
sum in the actual case {32). Since there are 12 possible
rankings that satisfy this condition (Table 1), the probability
of obtaining the actual or a more extreme result under the
null hypothesis is 12/11,440 = 0.00105. Thus, we have Tittle
difficulty in rejecting the null hypothesis.
Exampie 3. Assume the same conditions as outiined in Example 2
except that prior to sample seiection we have no reason to think
that Population 1 is necessarily less dense than Population Z.
That is, it seems just as 1ikely to be more dense as less
dense. Thus, our alternative hypothesis should be changed to
read:
HA: The two populations are not equally abundant (dense).
This situation is an example of two-tailed hypothesis testing,
as opposed to one-tailed hypothesis testing which was the case
in Example 2. It is called two-tailed because we must be
concerned with both low and high rankings that are as
extreme or more so than the one actually obtained. For each
of the 12 low extremes listed in Table 1, there is an opposite

high extreme that is just as likely under the null hypothesis
(Table 2).
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Since this brings to 24 the total possible rankings that
satisfy the stated condifions, the probability of obtaining the
actual or a more extreme result under the null hypothesis 1s
24/11,440 = 0.0021. Thus, even when the alternative hypothesis
is two-tailed, the sampie evidence still strongly fTavors rajection
of the null hypothesis.

The results demonstrated in the last two examples are indicative
of the general relationship between one- and two-tailed tests:
the probability associated with a two-tailed test is double that

associated with the corresponding one-tailed test.

Fundamental Properties of the Rank Sum

The notation associated with the ranking tests to be discussed
in this paper is as follows:
s = number of samples to be compared

n. = size of sample i

i

Rwg sum of ranks of sample i

éﬁ = Ré/’a‘yE = mean rank of samplie 1.

Ri is the sample statistic that is the basis of the tests
subsequently described. Because it is a sum of count data, it is
a discrete variable, i.e., its theoretical frequency distribution

has the appearance of & histogram. Under the null hypothesis,



Burwell fGooch
Page 12

this distribution exhibits the following properties:

1

1. Minimum: Ri(mén} ni(nééi}/z

i

2. Maximum: Ri(max) ni(2ﬂ~ni+2)/2

3. Mean: u; = nf(n+2)!2

2
4. Variance: o, = ni(n—n@)(n+1)/12
5. Symmetry

6. Approach to the normal distribution as n. increases in size.

If all n, are the same, the distributions of ali R; coincide.
In the usual case where s = 2 and ny # Nos the ranges (maxima,
minima, and means) of the distributions of Rl and R2 are different,
but the shapes (variances) remain the same. That is,
c? = ninz(nél}/iz = nznl(n+i)/12 = ai
and

Ri{max) - Rl(min) = nl(Zn»n1+i)/2 - ni{n1+1)/2 = nyn,

Rg(max) - Rz(min) = nZ(Zﬁwn2+i)/2 - ﬂz(n2+1)f2 = nyn,
In fact, these distributions are really mirror images of each
other: the occurrence of a particular value of Ry a distance d
above its minimum corresponds to a simultaneous occurrence of RZ
a distance d below its maximum. This follows from the fact that
the sum of R1 and R, must always equal n(n+1)/2.
Examgie 4. Suppose that samples of size iy = 5 and n, = 10
are to be seiected, each from a different population. Under the

null hypothesis, the distributions of R1 and R2 would be characterized

as follows:
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Attribute Ry Ry

Qgiméﬁ) i5 55
Qi(max} 65 105

Hy 40 80

a2 6672/3 66273

1

A

2 2
Clearly, o3 = o, and Ry(max) - Ry{min) = Ry(max) - Ro{min).

Suppose that after the samples have been selected, Ry = 32

and R, = 88. Then,

i

Ry - Ry(min} = 32 - 15 = 105 - 88 = Ry{max) - Ry

and

[H4

Ry{max) ~ Ry = 65 -~ 32 = 88 ~ 58 = Ry - Ry {min)

This demonstrates the mirror-image character of the distributions.
We may note also that the true means yu; and u, shown Tor this

case are the same as the sample rank sums shown in Example 1,

which was designed to represent the average result of sampling

from identical populations. Although, as pointed out in the

discussion of that earlier case, the sample mean rank (ii} is the

relevant statistic for purposss of comparison, it is an interesting

fact that neither of the two test methods described below explicitly

involves a function of this statistic. The first method avoids

this by appealing directly to the theoretical distributions of the

Ry» in particular the lower tails where extreme values occur. (The

upper tails are just as appropriate, but use of the lower
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+ails has been established by convention.} The second method
actually does involve the mean ranks, but not in a way that

reguires their calculation.

U Test (s = 2)

In our discussion above we learned that, for the two-sample
case, the statistical information provided by R1 and R2 is
identical, resulting from the fact that the distributions of
these two statistics are mirror images of each other. This means
that a test of hypothesis based on the appropriate tail of one
distribution is identical to a test based on the opposite tail
of the other distribution. Since the range of values for R1
is not, in general, the same as that for Rz, there is a problem
of (1) choosing which distribution to tabulate, and (2) doing
it in such a way that the lower tail will always be appropriate
for a test.

One solution to this problem is provided by the U test.
This test consists of calculating the statistic

Uy, = Ry - ni(n§+1)/2 (1)
for each of the two samples to be compared, and then determining
which of the two is smaller, called U:

U= %in(Ui,Uz)

Calculated U is compared to tabulated U {Table 3, 4, or 5)

to determine the significance of the sample comparison. Table 3,
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for example, lists the U values for each combination of ny

and A, Up to Ny =n, = 720 that delimit the Tower 10 percent

of the distribution of U. For one-tailed tests of hypotheses,
this percentage represents the significance tevel of the table.
For two-tailed tests of hypotheses, the correct percentage

of the significance level is double this, viz., 20 percent.
Tables & and 5, respectively, represent the 5 and 2.5 percent
values of U for one-tailed tests, and 10 and 5 percent values
of U for two-tailed testis.

As an example of their use, suppose that for a two-tailed
tsst of no difference in population distributions, Ny = My = 10,
i = 30, and the chosen significance level is 10 percent.
According to Table &4, for the sample sizes given, U cannot exceed
27 to be significant at the 10 percent level. As a result, the
null hypothesis cannot be rejecied.

There are at least two circumstances in which it is
desirable or necessary to use U as a basis for a two-sample
comparison. First, when both ns values are less than 10, the
distributions of the R% are not close enough to the normal to
justify using the alternative H test to be described subsequently.
Since the entries in Tables 3, 4, and 5 are based on the exact
distributions of U (hence, Qé)gthese should be used for smail-

sample comparisons.
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Second, for the purposes of many investigations, there is
no need to go through more complicated calculations in order to
closely approximate the probability of a particular test; a simple
"accept” or "reject" of %0 based on the U statistic is entirely
adequate. For this reason, Tables 3, 4, and 5 include entries
for samples up to size 20. Beyond this range it is necessary
to rely on the H test.

The rationale behind the U test is guite straightforward.
The idea is to operate on the R_i values in such a way that the
distributions of the resulting statistics coincide. The function
Ué accomplishes this by subtracting from Ri the minimum value
that R; can take, i.e., Rﬁimin)¢ Thus, the range of the
distribution is changed from

{Ri(min), Rﬁ(max)} = {ni(ni+1)/2, n{£2n«né+1)/2}
to

{0, ﬂlﬂz}
In this way the values of U1 and SZ’ respectively, that delimit
the lower o percent of the distributions of U1 and UZ are exactily
the same. Therefore, only one table of the Tower tail of U values
needs to be constructed for a given probability level, simply by
ensuring that U is the smalier of the two U_E values.

An alternative method that is equivalent to U is found in
some texts. This consists of (1) selecting that Ri value that
corresponds to the smaller of ny and No3 (2} caiculating R{ =

ni(n+1} - Ris {(3) determining which of R, and R; is smaller
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{note the resemblance to the procedurs for U}; and {4) comparing
this smaller value to a table of such values. The only difference
between the two methods s that in the case of U the distribulions
are transformed so that their minimum always occurs at the origin.
This means, of course, that the tables for one method are not

appropriate for the other.

H Test (s > 2}
The M test consists of calculating the statistic

~ 12 s .2 ~
H= AlnFi) ? ?;;!ri}- 3(n+l) (2}

This test statistic is distributed approximately as chi-square

with s-1 degrees of freedom under the following sets of conditions:

b. n, > 5 for all i
3.8. s> 3
b. ny > 5 for aitl i
If condition 1.a is satisfied, but not 1.b, then the U test
described previously should be used.
If condition 2.a 1is satisfied, but not 2.0, the H test
may be used but the test statistic should be compared to the
entries in Table O by Siegel {1956). This table Tists the

true probabilities associated with various values in the
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upper tail of H for values of s Nos and Ny Up to 5. If
at least one ns is as large as 5, and no n, is less than &,
then tabulated chi-square actually provides very good
approximations to the true probabilities above P = 0.10
(Kruskal and Wallis, 1952). Below P = 0.10, or failing the
constraints on the nys the true probabilities tend to be
overestimated. Thus, use of the chi-square table will, in
general, provide a conservative test, one that is less likely
te reject HO than when Siegel's Table 0 is used.

1f condition 3.a is satisfied, but not 3.b, I know
of no tables of exact probabilities, comparable to Siegel's
Table 0, that may be resorted to. As an alternative to
tables, Kruskal and Wallis propose the use of two functions
that are more accurate than H. However, I do not feel
that the usual quality of gill net catch data, plus the
relatively small increase in accuracy of the functions, justify
the additional complications required by their use.

Relying on known facts for the case where s = 3, I think we
may reasonably assume that if the chi-square table is used
to approximate the probability associated with H, our test
will be a conservative one.

Because of the nature of the chi-square distribution, it

is tabulated in terms of two-tailed probability levels.
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Consequently, if a two-tailed test of hypothesis is being considered,
the probability of H is the tabulated value found:; under a one-
tailed test, the correct probability is half the tabulated value.
In using H for a one-tailed test, the investigator should
he careful to ensure that a significant H does in fact support
the alternative hypothesis. He can do this by calculating the
individual ﬁé‘s and verifying that their ranking with respect
to each other corroborates Hga Es has already been pointed out,
the Riss are not appropriate for this because they represent
sums, not means.
1t may be noted here that twe equivalent formulations of

H are given by

H = 12 % n §2 3{n+1)
NG A A
125 5 iyl
= % niiRi {nt1}/2}

These verify the relevance of the %igss Expression {2) is
preferable as the definition formula of H, however, hecause

it requires fewer calculations.

Computational Checks

Because Ré and ﬁi values are fundamental guantities in
the test methods described, the careful investigator would
Tike to be assured that they have been calculated correctly.
Fortunately, certain relationships exist that may be taken

advantage of in this context. These are as foilows:
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1. The rank of the largest observation in the combined
sample must be equal to n
S

2. IR, = n{ntl)/2

i
3. Ul + U2 = NNy

Tied Observations

The characteristics associated with the statistics and
test methods described in the foregoing are based on the assumption
that each sample observation is unique (different from all other
sample observations for all samples combined), and would always
be so no matter how many samples are selected. In general, this
seems to be a rather unrealistic assumption, and is particulariy
so in the case of gill net catches.

0f the several methods that have been suggested for dealing
with tied observations, only one seems to have gained popularity
among text-book writers. This is the mean-rank method. It
consists of (1) assigning to each observation in a group of ties
the mean of the ranks associated with those ties; and (2) in
those cases where the H test is used, increasing the caiculated
value of H by a factor that is a function of the number of ties
in each group of ties. This expansion factor presumably accounts
for the fact that the variance of each Ri is smaller as a result
of the ties, which in turn produces a more precise test.

ATthough this method is relatively easy to apply and always leads
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to a unique test result, it possesses two disadvantages that I
feel imperit its validity.

First, it assumes that the configuration of ties obtained
for a given set of samples is identical to what would be obtained
for all possible sets of samples selected under the same conditions.
Obviously, this is not reasonable. The configuration obtained
in any ¢iven case is just one of a great many possibilities.
Statisticians evade this problem by resorting to the argument that
the variances and test results are conditional on the configuration
obtained. This means that the probability associated with the
test pesult, hence the acceptance or rejection of Hag is relevant
in the context of only that subset of samples, of all possible
sets, that exhibit this configuration. I believe that few users
of such a method would have much faith in their results if they
understood how narrowly these were constrained.

The second objection to the mean-rank technique is that it
destroys the comparability of the two test methods U and H. Since
the U test does not provide for a reduced variance in the case of
tied observations, whereas the H fest does, it is obvious that
the two methods of analysis will lead to different test results
in those cases where either may be used. In extreme cases it 13
possibie to accept HG under the U test and reject it under the H

test. Although the two tests usually are conceived of as mutually
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exclusive on the basis of sample size, this seems to be an
unreasonable Timitation on the use of U by those investigators
who prefer it to H. Moreover, even if this dichotomy of use is
adhered to rigidly, there still remains the difficulty of
justifying the incompatible philosophies associated with the
two methods.

A second technigue for dealing with tied observations consists
of assigning ranks in such a way as to minimize the difference
between the ﬁi*s, thus minimizing the probabiltity of rejecting HO.
This represents an extreme example of a conservative test. If
HO can be rejected under these circumstances, the investigator
may be even more confident of his results than is indicated by the
chosen significance level.

My experience in applying this method to gill net catch data
Teads me to believe that it is rather too conservative; that many
cases of legitimate differences between populations would go
undetected simply because of the large number of tied observations
that so commonly occur among such data.

A third method that appears to be the most satisfactory for
resolving the problem of tied observations is to assign the
associated ranks at random. This procedure overcomes all of the
objections to the previous two methods because it 1s completely
compatible with all of the requirements imposed by the null

hypothesis on the derivations of equations (1) and (2).
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If data analysis is computer automated, this technique

presents no particular burden. If. on the gther hand, data

anatysis must be performed manually, the method can be somewhat

tedious if the volume of data is rather large. In this regard,

the following key to a suggested methodology may be heipful:

A. A1l observations in a group of ties occur as members of

one sample. In this case. random assignment of ranks

is unnecessary; the resulis are the same no matter how

the ranks are assigned.

B. A group of ties includes observations from two samples.

1.
2.

Determine the range of ranks invoived {e.g., 07-11).

Using a table of random numbers, randomly pick values

that match those in the appropriate range.

Assign these one at a time To the tied observations
associated with the sample with the smaller number of ties
in the group. {This minimizes the table search.)

When all ties in this sample have been randomly assigned

a rank, assign all remaining ranks to the ties in the
other sample. There is no need to do this randomly,

the result is the same regardless of how it is done.

C. A group of ties includes cbservations from three or more

samples {(multiple comparison situation). In this case,
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proceed as in B except that, in step 4, continue assigning
ranks at random to the sample with the next Targer number
of ties in the group, and so on, until all samples have
been taken care of except the one with the largest number
of ties in the group. Then assign all remaining ranks
to the ties in this Tast sample.
Example 5. Assume that 1 + 3 + 6 = 10 observations from three samples

(A, B, and C) occur as ties in one group as shown below.

Rank Order
Position 6§ 7 8 9 10 11 12z 13 14 15

Catch 4 4 4 4 4 4 4 4 4 4

Since the range of ranks involved is 06-15, we must select values
from the random number table that occur in this range. The first
rank selected is assigned to the one observation from Sample A
(fewest number of ties in the group). The next three ranks selected
are assigned to the three observations associated with Sample B
{next larger number of ties). At this point, the random number
table is no longer needed because all remaining ranks are assigned
to the six observations associated with Sample C.

Using the random number table provided by Hodgman (1959}, the
following actual results were obtained: 09, 06, 07, 11. Thus,
rank 9 is assigned to Sample A; ranks 6, 7, and 11 are assigned
to Sample B; and ranks 8, 10, 12, 13, 14, and 15 are assigned to

Sample C.
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One possible objection to the random-rank method is
that the decision io accept or reject %G is based on g "flip
of a coin”, i.e., on the random assignment of the ranks. This
is not a rational argument, however. Although it is certainiy
true that the outcome of the random assignments will influence
the test result, its effect in the probabilistic sense is no
different from that associated with the outcome of the random
selection of population units to be included in the sample.
Random assignment of ranks is simply an extension of the sample
selection process. An investigator bases his decision to accept
or reject HO on the "flip of a coin” Jjust as much in the context

of sample selection as he does in the context of rank assignment.

Limitations
As with all experimental methods, those described in this
paper for comparing the relative abundance of fish populations
are constrained by certain limitations. These are associated
with (1) the effect of factors other than abundance on gill net
catches: (2) the relationship between abundance and gill net

catches; and {3) assumptions required by the ranking tests.

Extranecus Factors

Most investigators who use gill nets fo study population
abundance are aware that numercus factors other than abundance

can significantly influence their catches. This results from
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the fact that gill nets, as fishing gear, are both passive and
selective.

Gi11 nets are passive fishing gear in the sense that once
they have been set in the water, they rely entirely on the movements
of the fish to generate a catch. Consequently, any factor that
affects the movement of fish (in particular, amount of movement.
location of movement, and tendency to congregate) can in turn
affect a gill net catch, entirely independent of abundance.

Broadly speaking, such factors belong to two categories:

(1) those related to the fish {mostly species specific), and
(2) those related to the environment. The latter cateqory can
be divided further into those associated with the body of water
and those associated with the environment outside the body

of water,

Some of the more important factors that may affect fish
movements on a seasocnal basis are: spawning activity, water
level, physico-chemical properties of the water, water temperature,
barometric pressure, tight, food supply, and predators. The last
six of these can also play a significant role on a much
smaller time scale, even daily. Two others that are particularly
important, but not necessarily seasonally, are underwater
topography and sources of inflow.

Although an investigator cannot prevent these factors from
having an influence on his gill net catches, that is not

important. What is important is that he can and should select
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his samples so that as many of these factors as possible have
an equal effect on each of the samples, thus minimizing
irrevalent variation. A species difference, of course, is rarely
if aver a source of variability because there generally is no
meaning to be derived from comparing the abundance of one species
to another, either in the same body of water or in different
waters. Studies of individual species in one body of water
over time, with constancy maintained in as many gutside factors
as possible, represent the ideal situation. Gill net studies
in Montana are of this nature. It is apparent, however, that
there are needs elsewhere to compare populations from different
sodies of water {Movle. 1950). In such cases, consideration
mist be given to the possibiiity that differences in gill net
catches result in part or in whole from differences in fish
behavior that are caused by habitat differences.

£i11 nets are selective fishing gear because a given mesh
size is best at catching fish with a certain girth size; the
greater the deviation from this girth size the less the
probability of capturing the fish {ignoring capture by
entanglement). Thus, there are two ways that selectivity can
influence the catch of a gill net: (1} on the basis of the
mesh size(s) used, and (2) on the basis of the size distribution
of fish in the population. Normally, one would want to use
gi11 nets with the same mesh sizes when comparing catches
from different populations of fish. This means, however, that

a significant difference in catch between the populations may
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be the result of a difference in size distribution rather than
in abundance. Investigators who are interested conly in the
latter, therefore, may wish to conduct further studies in order

to distinguish between the two possibilities.

Abundance

It seems likely that abundance itself may have an effect on
gill net catch that is independent of its effect in terms of
numbers. For example, it would not be unreasonable o expect
changes in behavior to accompany reasonably large changes in
abundance of a fish population. As a result, everything else
being equal, a given change in abundance might lead to a greater
or lesser change in gill net catch, depending on the behavioral
changes in the fish. This compound effect of abundance on
gill net catches creates difficulties in interpreting differences
between them,

One can imagine, for example, two populations of fish where
a difference in abundance of, say, 20 percent is reflected on
average as a difference in gill net catch of 25 percent. If
the investigator has chosen a 25 percent difference in abundance
as representing the minimum level of biological significance,
and uses the gill net difference as a measure of this criterion,
then he would incorrectly conclude that these two populations
are significantly different {assuming that statistical significance

is also attained).
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To my knowledge, the relationship between population
abundance and giil net catch has never been studied. In lieu
of such information, therefore, the investigator should choocse
a level of biological significance that is large enough to
compensate for discrepancies of the kind and magnitude

described above.

Assumptions
The test methods described in this paper are limited by

very few assumptions. Those mentioned by Kruskal and Wallis
(1952) are:

1. A1l observations are randomly selected

2. A1l observations in a particular sample are selected

from one population

3. For the various populations sampled, the distributions

of the attribute being measured are "approximately
the same" in form or dispersion.

The last assumption is included only because conventional
tests of hypothesis are structured in terms of population means
(B.g.s Hot ug = up ¥8 Hpoouyg # ﬁzjg Tests of this nature are
rather meaningless unless such an assumption is true. Thus,
assumption {3) is a requirement of the hypothesis, not the test
method. Comparisons of population abundance in terms of gill
net catches belong to this class of tests because the level of

hiological significance is normally conceived of in terms of some
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minimum difference in mean catch. This means that, in order for
such comparisons to be valid, the sample distributions of gill
net catches should be reasonably similar in form. If there is
any doubt about their similarity, the distributions should at
least be plotted for visual comparison.

U and H can also be used to test a more general class of
hypothesis, where interest may lie in any kind of population
difference invelving central tendency or dispersion. Under
these circumstances, assumption (3) would not be included.

Many text-book writers mention an additional requirement
of these tests, viz., continuous population distributions.
Kruskal (1952), however, has shown that continuity is not
necessary. Thus, U and H may be applied to gill net catch data
without any additional gqualifications required.by their

discrete nature.

Unusual Features
Although the ranking tests discussed in this paper are

designed, and admirably suited, to discriminate between samples
drawn from populations with different central tendencies, it is
a remarkable fact that measures of central tendency (e.g., mean,
median, mode) play no role in the conduct of these tests.
Further, the individual sample statistics that are used

(Ré and Ui) obviously cannot be calculated without reference to

some other sample or samples; that is, they are not unigue
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functions of the sample theay represent, independent of any

other sample; which is the case with measures of central tendency.
There are two consequences of these facts that have important
implications for users who are accustomed to parametric

statistical methods.

Interpretation of Results

Since no measure of central tendency, or any other unigue
sample statistic, is generated in the process of conducting a
ranking test, it may be difficult to precisely and explicitly
explain how samples do or do not differ as a result of applying
one of these tests. Although conventional measures of central
tendency may be used as descriptive statistics in the analysis
of the data, these cannot always be relied on to explain the
results of a ranking test. For example, as we shall see in a
later section, it is quite within the realm of possibility to find
significant differences between samples whose means and/or medians
are identical. Contrariwise, we can also find sampies between
which the ranking tests are incapable of discriminating in spite
of astronomical differences between these statistics. Most
amazing of all, cases can be found where measures of central
tendency imply that Population A is more dense than Population
B, say, whereas the ranking tests indicate the opposite. All this
does not mean that ranking tests are unreliable or jnefficient,

but simply that assumption {3) of the previous section, viz.,
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similar population distributions, has not been satisfied. Since
these tests are also capable of discriminating on the basis of
dispersion differences, independent of central tendency differences,
such results may occasionally occur in the analysis of gill net
catch data. Unless the investigator is willing to admit population
differences in terms other than of mean {or median} catches, he

will be unable to rely on these results.

A more conventional problem in interpretation invoives the
case where s > 3. A significant test result in this situation
means that some samples differ from other samples. However, it
does not indicate where the differences lie. Such determination
is Teft to the judgment of the investigator. In this respect
ranking tests are no different from other muitiple-comparison
tests such as F, x2, or the median test that Moyle and Lound

recommend,

Determination of Sample Size

Investigators need to know how large a sample to select in
order to detect a given population difference with a predetermined
degree of confidence. Since ranking tests do not operate on the
principle of differences between measures of central tendency,
we cannot develop a sample size formula in terms of such differences
(as we can for the t test, for example).

On the other hand it can be shown that, under the proper

circumstances, the following relation is satisfactorily close:
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HEIH = ﬁg/n = g, Say {(3)

where

H = test statistic obtained with a sample of size n

H =
e

test statistic obtained with a sample of size n..

Thus, if values for H, Hg, and n are known, we can determine

n_ as
£

i
€

efl. {4)

The technique required consists of three steps as follows:

(1)

select samples from the populations involved, using
sizes that appear reasonable (normally, 10 < n, < 20
should be reasonable).

calculate the test statistic H and determine if it 1is
significant at the chosen probability level, say a3
if it is, the original sample size was sufficient.

if H is not significant, calculate the required
sample size expansion factor ¢ from velation (3),
where H6 is replaced by the chi-square value needed
for statistical significance at the chosen probability
level; then calculate n, from relation (4). Since

n units have already been selected, only n_-n

additional units need be drawn.

Ideally, any additicnal units that must be selected should

be spread equally among the various populations being compared.

For a population that is being studied over time, this obviously
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is impossibie, and all additional units must be selected from
the current version of the population.

The conditions under which this sample-size procedure is
valid are simply that HA is true and the sampie data are
representative of the populations from which they have been
selected. Obviously, it cannot work if HG is true. In that
case, regardliess of how large a sample is selected, we will
reject Hy only with probability o. Consequently, Step (3)
above should be resorted to only if there is good reason to
believe that there is, in fact, a biologically important

difference between the populations invoived.

I1lustrative Examples

The purpose of this section is fo use exampies to illustrate
various ideas presented in prior discussion. These examples
are all in terms of gill net catches, either real or hypothetical,
and demonstrate the recommended method of tabulating and
summarizing data. The origin of the data is shown at the top of
each table. Unless otherwise stated, the following conditions
are assumed for each example:

HO:

HA:

Significance level: 20 percent.

populations do not differ in density

populations do differ in density
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Example I. {Significance level =5 nercent)
Source: Moyle and Lound {1960}

Sampie 1 Sample 7

Catch Rank Catch Rank

0 i 2 4

0 2 4 8

1 3 4 9

2 5° 5 i1

3 6 6 12

3 7 6 13

4 10° 8 14

9 15

11 16

TOTAL 13 34 55 102
MEAN 1.86 4.86 6.11 11.

MEDIAN 2 6

2 Assigned Randomly

s =2 no =16 U, = 34 - 7(8)/2 =
ng =7 R, = 34 U, = 102 - 9(10)/2
Ny, = 9 R, = 102 U = Min{U;.Us) = 6

4. As a check on the calculations, we note that:
1. The rank associated with the highest catch in the
sampie (11) is 16 = n

2. Ry * R2 = 34 + 102 = 136 = 16(17)/2 = n(n+l}/2

1
3. U+ U2 =6+ 57 =63 =7(9) = nqin,

H]

(4]



Burwell Gooch
Page 36

B. Since both n; are less than 10, the U test is preferable to the
H test. Using Table 5 we find that, for ny = 7 and n, = 9, a
value of 4 = 12 is significant at the 5 percent level for a
two-tailed test. Since our U is only 6, this means that we
easily reject the null hypothesis. Clearly, U =6 is significant
at a much lower level than 5 percent.

C. Although the H test tends to be conservative in this case, it
is instructive to see how it performs. From equation (2) we
calculate

12 2.2
nin+l ? Ri/ni - 3{n+1)

= Tg%%77~{(34)2j? + (102)2f9} - 3{(17)

H =

7.29, 1 df

For the same degrees of freedom. Xz@l = 6.63 and

2
X005 = 7.88. Since our H value is a little larger than

the half-way point between these two values, we may conclude
that the associated probability is somewhat less than 0.0075.
Thus, even with the H test, we have Tittle difficuity rejecting
H9¢
D. When Moyle and Lound (1960) used these same data to demonstrate
the median test method of comparing samples of gill net catches,
they reported that the probability associated with a one-tailed
test is P = 0.0104 {correct value is P = 0.0105). Doubling
this value for the comparable two-taiied test, we find P = 0.021.
Since this is considerably higher than the probability associated

with the H test, the greater power of the latter, even under

iess than ideal conditions, is evident.
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Examplie IT.
Source: Lake Mary Ronan kokanee {Oncorhynchus nerka)
catches
Samplie 1 Sample 2
Catch Rank Catch Rank
0 1 0 3?
0 ? 0 8®
0 4 7 11
0 b 9 14
0 6 42 15
0 7
0 9
6 10
8 12
9 13
TOTAL 23 6% 58 51
MEAN 2.3 6.9 11.6 106.2
MEDIAN g 7
a Assigned Randomly
s =2 n =15 Uy = 69 - 10(11)/2 = 14
ng = 1G R1 = 69 %2 = 51 - 5{6)/2 = 36
n, =5 R, = 51 4 =14

A. Computational checks:

1. The rank of the highest catch (42} is 15 = n
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120 = n{n+1)/2

[aN)

)
4

e
il

+ U, = 50 = NNy
B. Table 3 shows that for samples of size n, = 10, ny = 5
(equivalent to ny = 10, n, = 5), U cannot exceed 14 for
significance at the 20 percent level. Since caiculated
U equals 14, we may reject the null hypothesis.
C. Since ny = 10, it is also permissable to use the H test:
H = Tstey ((69)°/10 + (51)%/5} - 3(16)

= 1.815, 1 df

2
Ag.2

consistent with our result in B.

= 1.64, so the null hypothesis may be rejected,

D. If the median test is used to compare these two samples, the
two-tailed probability would be found to be P = 0.57, again
demonstrating the superior power of the ranking tests.

E. There is a total of (g)(?} = 72 different ways that ranks 1-9
and 13-14 can be randomly assigned to the tied observations
in this example. Of this total, 28 {39 percent) result in
U< 14 (Ry < 69); i.e., favor rejection of the null hypothesis
at the 20 percent probability level. Thus, before the ranks
were actually assigned in this example, the probability was
Tess than 2 in 5 that we would select them in such a way

that the null hypothesis would be rejected. In spite of

these odds, however, that is precisely what we did.
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1f we had chosen ocur level of significance at 10 percent
instead of 20 percent, there would have been only 10 chances
in 72 (less than 14 percent) of randomly choosing ranks such
that the null hypothesis could be rejected (U < 11). This
demonstrates the role that chance plays in sampiing experiments.
In conventional situations chance enters into the sample selection
phase only. 1In cur case it plays a role in both the sample
selection and rank assignment phases.

Example II1. ({Significance level = 10 percent)

Source: Lake Mary Ronan pumpkinseed (Lepomis gibbosus)

catches
Sample 1 Sample &
Catch Rank Catch Rank
0 1 1 5
0 2 23 8
0 3 82 13
0 4 105 14
4 6 147 15
4 7
24 9
35 10
4z i1
75 12
TOTAL 184 65 358 55
MEAN 18.4 6.5 71.6 11

MEDIAN 4 82
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s =2 n =15 U1 = 65 ~ 10{11)/2 = 10
ny = 10 Rl = 65 Uy = 55 - 5(6)/2 = 40
ny = 5 R2 = b5 Uy =10

A. Computational checks:

1. The rank of the highest catch {147} is 15

1
3

it

2. Ry +R 120 = n{n+1;/2

1 2
3. U1 + Uz = 50 = nyn,
R. Table 4 shows that for samples of size n, = 10, n, = 5,
U cannot exceed 11 for significance at the 10 percent Tevel.
Since calculated U equals 10, we may reject the null hypothesis.
€. Since ny = 10, we can use the H test:

H = ﬁ%‘%‘s‘)‘ {(65)2/19 + (55)2/5} - 3{16)

U

3.375, 1 df

2
X0.1

with our result in B.

= 2.71, so the null hypothesis is rejected, consistent
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Example IV.
Source: Lake Mary Ronan pumpkinseed catches
Samplie 1 Sample 2
Catch rank Catch rank
G 1 i 2
7 3 23 4
30 5 82 8
32 6 105 9
43 7 147 10
TOTAL 117 2z 358 33
MEAN 23.4 4.4 71.6 6.6
MEDIAN 30 82

& Same as Sample 2 data in Example III.

s =2 n =10 U, =22 - 5(6)/2 =7
n =5 Ry = 22 U, = 33 - 5(6)/2 = 18
fy = 5 R, = 33 U =7

A.  Computational checks:
1. The rank of the highest catch (147) is 10 = n
n{n+tl)/2

i

2. Ryt Ry = 55
3. Up+ U, 25 = nyn,

B. Using Table 3 for samples of size Ny =Ny = 5, we Tind that
U cannot exceed 5 for significance at the 20 percent level.
Since calculated U equals 7, we accept the null hypothesis.

C. This example demonstrates how the Ri valuye for a given sample

changes relative to the sampie with which it is being compared.
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In this example, the Sample 2 data have an Ri value of 33

{relative to the Sampie 1 data), whereas in Example III the

same data have an Ré value of 55 (relative to the Sample 1 data).
D. 1t is interesting to note that, in spite of the iarge differences

between the two sample means and between the two sampie

medians, the ranking test was unable to detect a significant

difference between the samplies. Assuming that we are certain

of a real difference between the populations sampled, we can

use the procedure for determining a sample size that is targe

enough to provide statistical significance. Since this requires

calculating H, which normally would not be used for comparing

samples this small, we realize that our calculations may

not be entirely accurate. If there is any doubt about this,

however, we can always inflate the figure somewhat to

be on the safe side.

Using relation (2},

H - T{T%% (325 + (22)%75) - 3(11)

Hi

1.32
Using relation {3},
g = HQ/H = 1.64/1.32 = 1.24
where H€ = 1.64 represents the value that delimits the upper

20 percent of the 1-df chi-square distribution.
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Finally, using relation {4},
n, = en = 1.24(10) = 12.4 or 13.
This says that, with a sample size of 13, selected under
the same conditions as the original sample of 10, we
should be able to show a statistically significant difference
between the individual population sampies at the 20 percent
probability level. Since the initial sample already contains
10 units, it is only necessary to select an additional 3

to complete the requirement.
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Example V.
Source: Middle Bowman lLake rainbow {Salmo gairdneri) catches

Samplie 1 Sample 7 Sampie 3 Sample 4 Sample 5

Catch Rank Catch Rank Catch Rank Catch Rank Catch Rank

0 42 0 10° 0 18 1 12 0 2
0 52 1 142 0 g® 1 13 0 3
0 112 2 20 0 g2 1 16 0 6
1 15° 2 21 1 187 3 25° 0 7
1 17° 6 30 1 19° 3 27° 2 23°
2 228
3 24
3 26
3 28
4 29
TOTAL 17 181 11 95 2 55 9 93 2 41
MEAN 1.7 18.1 2.2 19 0.4 11 1.8 18.6 0.4 8.2
MEDIAN 1.5 2 0 1 0

a Assigned randomly

s = 5 n= 30
ng = 10 Ry = 181
np = 5 R, = 95
Ny = 5 R3 = 55
ng = 5 Ry = 93

= 5 R = 41
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A. Computational checks:
1. The rank of the highest catch {(6) is 30 = n
5
2. ZR% = 465 = pi{n+l)/2
i

B. Since s » 3, and all n; > 5, we can use the H test in conjunction

with the tabulated chi-square distribution:

12 2 2 2, 2 2 e

H = 2570317 {(181)°/10 + (95)°/5 + (55)7/5 + (93)°/5 + (41)7/5} - 3(31}
= 7.03, 4 df

X; ) = 5.99, so the null hypothesis is rejected.

C. Since this is a multiple-comparison test, we cannot be certain
where the sample differences cccur. Looking at the five mean
ranks, however, we may reasonably speculate that Samples 1, 2,
and 4 differ from Samples 3 and 5. Hopefully, this division of
the data would be compatible with other information about the

five populations.
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Example VI.
Source: Random number table
Sample 1 Sample 2
Catch Rank Catch Rank
11 1 13 2
27 5 18 3
37 7 25 4
43 8 36 6
44 9 55 10
59 11 66 14
63 12 77 15
64 13 94 18
85 16 96 19
88 17 99 20
TOTAL 521 93 579 111
MEAN 52.1 9.9 57.9 11.1
MEDIAN 51.5 60.5
s = 2 n = 20 Uy =99 - 10(11)/2 = 44
ny = 10 Ry = 99 Uy = 111 - 10(11)/2 = 56
n, = 10 R, = 111 U = 44

A, Computational checks:

1. The rank of the highest catch {99) is 20 = n
1t R2 = 210 = n{n+1}/2
3. Ul + U2 = 100 = nlnz

2. R

B. Using Table 3, we find that for sample sizes of n, =n, = 10,

U cannot exceed 33 for significance at the 20 percent probability
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level. Since calculated U equals 44, we accept the null
hypothesis.

C. This exampie provides a measure of the amount of sample
variability to expect when sampiing from a uniform distribution
{a11 values of the atiribute occur with equal frequency in
the population). Since both samples are drawn from the same
population, we expect our 20 percent test to indicate no
significant difference four times out of five, on the average.
The two samples actually drawn meet our expectation in this

regard.



Burwell Gooch

Page 48

Example VII.

Source: Hypothetical
Sample 1 Sample 2
Catch Rank Catch Rank

0 1 2 7

0 2 2 8

Y 3 2 9

0 4 2 10

0 5 2 11

1 6 2 12

3 14 2 13

3 15 4 19

3 16 5 20

3 17 ) 21

3 18 7 22

32 24 12 23
TOTAL 48 125 48 175
MEAN 4 10.42 4 14.58
MEDIAN 2 2
s = 2 n = 24 = 125 - 12(13)/2 = 47
ny = 12 Ri = 125 = 175 - 12(13)/2 = 97
n, = 12 R, = 175 = 47
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A. Computational checks:

1. The rank of the highest catch (32} is 24 = n

i

2. Ry # RZ = 300

3. ﬂi + 62 = 254 = ﬁiﬁz

nintl}/?

B. Using Table 3, we find that for samples of size ny = 0y = 12,
U cannot exceed 49 for significance at the 20 percent level.
Since calculated U equals 47, we reject the null hypothesis.

C. The interesting point of this example is that both the mean
catches and median catches of the two samples are identically
the same (4 fish/net set and 2 fish/net set, respectively),
yvet our ranking test indicates that there is a significant
difference (somewhere) between the two. This shows that
ranking tests are capable of discriminating in terms of
differences other than in central tendency. As we learned
in a previous section, these include differences in dispersion.
Looking at the distribution of catches in the two samples,
we can see that there is a fairly obvious difference in this
regard. One possible interpretation of this difference is
that Population-1 fish tend to congregate more than
Population~2 fish. Thus, a larger percentage of their
habitat is deveid of fish, but thay are more abundant in
the areas in which they occur. If the investigator is
interested only in the total number {or density) of fish in

each population, then he would have to reject the results of
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the statistical test (more appropriately, he would not even

make the test because the mean and/or median catches tell him
there 15 no need to}. If, on the other hand, he is also
interested in other kinds of differences between the populations
(e.g., behavioral)}, then he would conclude from his statistical
test that there is indeed a difference.

Exampie VIII.

Source: Hypothetical

Sample 1 Sample 2
Catch Rank Catch Rank
4] 1 2 7
0 2 2 8
0 3 2 9
0 4 2 10
0 5 2 11
1 6 2 12
3 14 2 13
3 15 4 19
3 16 5 20
3 17 6 21
3 18 ‘ 7 22
80 24 12 23
TOTAL 96 125 48 175
MEAN 8 10.42 4 14.58

MEDIAN 2 2
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s = 2 n o= 24 Ul = 125 - 12{13})/2 = 47
ny = 12 R1 = 125 Uy = 175 - 12(13)/2 = 97
ny = 12 R2 = 175 g =47
A.  Computational checks:
1. The rank of the highest catch (80) is 24 = n
2. R1 + R2 = 300 = n{n+1)/2
3. Ui + U2 = 144 = Ny,

B. Since calculated U equals 47 compared to tabulated U of 49
(Table 3), we reject the null hypothesis.

C. This example is identical to the previous one, except that the
largest catch in Sample 1 is now 80 instead of 32, resulting
in a 2-fold difference between the sampie means. There are
two observations to make about this case. First, in spite
of the change in the one catch {and its effect on the mean
catch), there is no change in the ranking test: U = 47 in
both cases. Clearly, this is because the change in catch
does not cause a change in the individual ranks. Furthermore,
increasing the mean catch in the same way by a factor of 10,
100, etc., will have no effect either. This emphasizes the
concept that means of sampie observations are not necessarily
relevant statistics in the context of ranking tests.
Second, and perhaps more important, there is a very real danger
of misinterpreting the results of this test. For the average
investigator who is loocking only for a difference in population

abundance, it would be extremely easy to conclude that
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Population 1 is more abundant than Population 2. After all,
jsn't this justified by both the 2-fold difference in mean
catch plus the significant U value? Unfortunately, it is
not. If one takes the trouble to Took at the mean ranks,

he will see that R, is smaller than iz. Thus, the U test

1
cannot possibly be telling us that Population 1 is more
abundant than Population 2. What it is telling us is exactly
the same thing it told us in Example VII, viz., that there is
a dispersion difference between the catch distributions.

It just so happens that there appears to be (and may in fact
be) an abundance difference, but this has no bearing on
the statistical test.
Summary
On the basis of the results presented in this paper, the
following recommendations are proposed:

1. Nonparametric ranking tests offer a statistically valid and
efficient way of analyzing gill net catch data.

2. For samples that are large enough for the normal approximation
to apply, the Kruskal-Wallis H test is appropriate Tor any
comparison involving two or more samples.

3. For two-sample cases where the samples are not large enough
for the normal approximation to apply, or in those cases where
the investigator prefers, tables of the U statistic may be

used as an alternative to the H test.
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4.

For three-sample cases where the samples are not large enough,
Siegel's Table 0 of the H statistic may be used as an alternative
to the chi-square approximation of the H test.

In order to satisfy all assumptions of the method, in addition
to maintaining the broadest possible scope for statistical
inference, the ranks of tied observations should be assigned
randomly whenever they involve two or more samples.

Since ranking tests are capable of discriminating between
samples on the basis of differences in central tendency as
well as differences in dispersion, the investigator should

be alert for instances of the latter; otherwise, misinter-
pretations of data analyses may result. As an aid to avoiding
such problems, he should make it a habit to do two things.
First, prior to sample selection, he should choose a minimum
difference in mean catch that he considers biologicaily
significant. If the difference actually found falls

below this value, then no statistical test would be made.
Second, assuming that a statistical test is called for, he
should rank the set of mean ranks and the set of mean

catches, If the two sets do not fall in the same order,

then again no test should be made.
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Table 1. Sample-1 rankings as Tow as or lower than that

actually obtained.

Rank Order Position Sum of

1 2 3 4 5 6 7 8 9 1o 11 12 13 14 15 16 Ranks

X X X X X X X 28
£ X X X X X X 29
X X X X X X X 30
¥ X X X X X X 31
X X X X X X 32
X X X X X X X 30
X X X X X X X 31
X X X X X s A 32
XX X X X AoX 32
X X X X X X X 31
LD S S ¢ X X X 32

X X X X X X X 32
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Table 2. High sample-l rankings as extreme as or more extreme

than that actually obtained.

Rank Order Position Sum of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ranks

X X X X X X X 91

X £ X X X X X 90

X X X X X X X 89

X X X X X X X 88

X X X X X X X 87
X X £ X X X X 89

X X X X X X X 88

X X X X X X X 87

X X X X X X X 87

X X X X X X X 88

X X X £ X X X 87
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Tabie 3. 20% Probability values of U for a two-tailed testa’b

2 345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 - = - - - - 0 0 1! i 1 1 1 1 2 2 2 2
2 5 011123 4 4 5 5 6 & 7 7 8 8 8
3 1 12 3 456 7 8 9 10 11 11 12 13 14 15 16

4 3 45 6 7 9 11 12 13 14 16 17 18 19 21 22 23
5 5 7 91013 14 16 18 19 21 23 24 26 27 29 31
6 9111316 18 20 22 24 26 28 30 32 34 37 39
7 13 16 19 22 24 27 29 32 34 37 39 42 44 47
8 1922 25 28 31 34 37 40 43 46 49 52 54
9 26 29 32 36 39 42 46 49 52 56 59 63
10 33 36 40 44 48 52 55 59 63 67 71
11 41 45 49 53 57 62 66 70 74 79
12 49 54 59 83 68 73 77 82 87
13 59 64 69 74 80 85 90 95
14 70 75 81 86 92 98 103
15 81 87 93 99 105 111
16 94 100 107 113 119
17 107 114 121 128
18 121 129 136
19 136 144
20 152

®Fach entry corresponds to the value of U that delimits the lower 10% of

the distribution of U, For one-tailed tests, the entries represent 10%

probability values.
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b Since the table is symmetric about the main diagonal {U(nl,nz) =

U(nz,nl)}, those entries below the main diagonal are omitted.
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Table 4. 10% probability values of U for a two-tailed test®>”

n
3?\5 345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

e
2 - -00011 1 1 2 2 2 3 3 3 4 & 4
3 0012233 4 5 5 6 7 7 8 9 910 11

4 12 3 45 6 7 8 9 10 11 12 14 15 16 17 18
5 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
6 7 91012 14 16 17 19 21 23 25 26 28 30 32
7 i1 1316 17 19 21 24 26 28 30 33 35 37 39
8 16 18 20 23 26 28 31 33 36 39 41 44 47
9 21 24 27 30 33 36 39 42 45 48 51 54
10 27 31 34 37 41 44 48 51 55 58 62
11 34 38 42 46 50 54 57 61 65 69
i2 42 47 51 55 60 64 68 72 77
13 51 56 61 65 70 75 80 84
14 61 66 71 77 82 87 92
15 72 77 83 88 94 100
16 83 89 95 101 107
17 96 102 109 115
i8 109 116 123
19 123 130
20 138

2 rach entry corresponds to the value of U that delimits the lower 5%

of the distribution of U, For one-tailed tests, the entries represent

5% probability values,



Burwell Gooch
Page 60

b Since the table is symmetric about the main diagonal {U(nl,nz) =

U(nz,ni)}, those entries below the main diagonal are omitted.
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Table 5. 5% probability values of U for a two-tailed testa’b

Q}Q? 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 - - - - -090 0 0 1 1 1 1 1 2 2 2 2
3 - -0 1122 3 3 4 4 5 5 6 6 7 7 8
4 112 344 5 6 7 8 9 10 11 11 12 13 13
5 2 4 5 6 7 8 9 11 12 13 14 15 17 18 19 20
6 5 7 810 11 13 14 16 17 19 21 22 24 25 27
7 81012 14 16 18 20 22 24 26 28 30 32 34
8 1315 17 19 22 24 26 29 31 34 36 38 41
9 17 20 23 26 28 31 34 37 39 42 45 48
10 23 26 29 33 36 39 42 45 48 52 55
11 30 33 37 40 44 47 51 55 58 62
12 37 41 45 49 53 57 61 65 69
13 45 50 54 59 63 67 72 76
14 55 59 64 67 74 73 83
15 64 70 75 80 85 90
16 75 81 86 92 98
17 87 93 99 105
18 99 106 112
19 113 119
20 127

& Each entry corresponds to the value of U that delimits the lower 2.5%

of the distribution of U. For one-tailed tests, the entries represent

2.5% probability values.

b Since the table is symmetric about the main diagonal {U(nl,nz) =

U(ﬂZ’nl)}’ those entries below the main diagonal are omitted.
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Figure 1.

Figure 2.

Figure 3.

Graph of normal frequency function with mean p and
standard deviation .

Typical frequency distribution of gill net catches.
Typical relationship between mean and standard

deviation of gill net catches. (Data after Moyle, 1950).
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Catch Frequency (number of sets)

4

15

Catch per Net Set
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