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ABSTRACT

Validation of 2 method estimating minimum instrean
flow needs for fish is a prerequisite to its applicaticn.
The validity of the average-riffle~wetted-perimeter method
was investigated through study of the relationship between
artificially supplemented rainbow trout populations and
flow-related decreases In habitat in three sections of
Ruby Creek, Madison County, Montana. Low summer flow had
a regulating influence on trout numbers znd biocmass in the
study sections. Factors other than short-term summer low
fliow may also have limited the trout populations.
Numerical abundance and bilomass of trout decreased as flow
decreased in all study secticns. Emigratiocn from two
study secitions influenced by irrigation diversions corre-
lated better with average daily flow than did emigration
from a section with natural flow. Following flow
reduction, trout emigration lagged 11 to 15 davs in two of
the three stream sections. Emigration from all study
sections was primarily In an upstream direcrtion. Average
riffle wetted perimeter was not a consistent index of
summer habitatr suitability for rrout. In a pool-riffie
section, average~wetted perimeter of riffles was highly
correlated with trout numbers and biomass, and the
inflection point on the wetted perimeter curve corre-
sponded closely with the flow at which the rate of trout
emigration increased substantially. Correlation between
average welted perimeter of riffles and trout numbers in
two run-riffle sections was poor. Most habitast variables
were highly correlated with flow and with each other.
Variables estimating vriffle surface width associated with
depth greater than 15 cm changed in a pattern similar to
percentage change in trout numbers and biomass.



INTRODUCTION

Water demand for agricultural, industrial, and

domestic use has rvesulted in partial or total dewatering

f many trout streams within the western lUnited States.
To protect and restore stream fisheries, biologists must
be able to reliably estimate how much stream flow is
needed for that rescurce. Methods of estimating and recom=-
mending adegquate instream flows for aguatic 1life range
from subiective inference, based on little or no field
data, to detailed guantification and interpolation of the
eccliogical regquirements of the species of concern. The
assumption of a habltat-standing crop relationship is
implicit to all methodologies.

Several investigators have found correlations between
physical habitat parameters and fish numbers and biomass
in streams. Wesche {1974}, Bickelson {19763, Nickelson
and Reisenbichler {(1%77), Hickelson and Hafels (1878}, and
Binne {(1%79) developed and implemented models explaining
the variation in fish numbers and biomass found in
numercus streams. Inconsistencies within these models
were assumed to he dus to unmeasured phvsical habitat
parameters.

Nelgon {1980} evaluated the adeguacy of four methods
{single transect wetted-perimeter method, multiple wetted-

perimeter transect method, non~field method, and instreanm
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flow group incremental method, IFGY for recommending
instrean flow on large vivers. He found that the wetted~
perimeter methods provided acceptable absolute minimunm
flow recommendations when compared to long-term standing
crop - flow relationships (Table 13. Based on ¥Helsgon's
study, the Montana Deparvrtment of Fish, Wildlife and Parks
{MDFWP) chose wetted perimeter as the preferred method
for recommending minimum flows for Montana streams. The
wetted-perimeter method assumes that a stream's trout
carrying capacity is proportional to its food production
area, which ig8 in turn proporitional to the riffle-wetted
perimeter (MDFWP 1%8l). Collings (1972), Collings and
Hill {(1973) and White and Cochrauer {(1973) used methods
based upon this concept to predict the quantity of water
preferred by fish for reavring. MDFWP {(1981) states that
riffle~wetted perimeter may also provide an index of other
factors limiting fish populations including spawning
sites and cover.

The wetted—-perimeter method uses the relaticonship
between wetted perimeter and discharge for viffle cross-
secticns to derive flow recommendations. Wetted perimeter
ig the distance along the bottom and sides of a channel
cross=section in contact with the water {Figure 13. As
discharge increases, wetted perimeter incresses, but not
at a constant rvate. Wetted perimeter increases rapidliy

with Increasing discharge up to the point where the
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5
water covers the entire stream channel. Beyond this
point, wetted pevimeter increases less rapidly as
discharge increasss due (o the more wvertical sides of the
channel. Points on wetted perimeter-diescharge curves
where there are abrupt changes in wetted perimeter with
small changes in discharge, are referred to as inflection
points.

There are generally ome or two inflection points,
depending on the channel cross section shape (Figure 23}.
An instream flow recommendation for a section of stream is
made by averaging wetted perimeters from 3 te 10 riffle
transects and plotting thewm against discharge. When there
is only one inflection point, the corresponding flow is
selected as the low flow recommendation. When there are
two inflection peints, the method provides a range of flows
(between the lower and upper inflection points) from which
a single instream flow can be recommended. The wetted
perimeter~discharge curve for each riffle cross-section is
derived using a wetted perimeter computer model (WETP)
developed by the HDFWP (Welson 1980). The WETP model uses
2 to 10 sets of water surface elevations surveved at
different known discharges at sach cross-section. Water
surface elevations {stages) are then used to egtablish a
least-sqguare fit of log-stage versus log-discharge. This

rating curve, coupled with & surveved cross—-sectional
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of inflection points on corresponding wetted
perimeter~discharge plois.



profile of the stream bed, is all that is needed :io
predict the wetted perimeter for esach flow of intevest.
The wetted-perimeter method is presently being
applied to Montama streams, though its validity has only
been shown on rivers with average annual discharge above
12,000 titers/sec (424 cubic feetr per second, cfs). The
goal of this study was to examine the validity of the
wetted perimeter method of recommending minimum instream
discharge for small streams of less than 1,400 liters/sec
{50 cfs} average annual discharge. Objectives of the
study were to test the following hypotheses: 1.
salmonid abundance in small sitreams is regulated by low
summer [low, 2. decreases in flow and flowv-related
reductions in habitat asavailability are accompanied by
decrveases in trout abundance,; and 3. average wetted
perimeter based con riffle cross sections can be used as =z
general index of sdult salmonid habitat suitability in

gmall streams.
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DESCRIPTION OF STUDY AREA

Field studies were conducted on Ruby Creek, in
iadison County, Montana {(TH3, RIW, Sec. 10-~12, Figure 3).
Ruby Creek flows down the east siope of the Gravelly
Mountain Range. FElevation of the 85 square kilometer
(kmzj drainage vanges from 1682 meters {(m) to 2682 n.

The Ruby Creek drainage has a annual average
precipitation of 53 centimeters {ecm, MDFWP 1981).

Ruby {reek was chosen as the study area for several
reasons. The stream was small, with discharge durlng the
study ranging from 822 to 351 liters/sec (29 to 12 cfs).
Average aunnual discharge was reported by MDFWP (19%1) to be
less tham 1,400 liters/sec (50 cfs). These flows allowed
efficient electrofishing and permittred construction of
semipermanent fish weirs. Also Ruby Creek had adequate
nunbers of vainbow trout for use in experimental
supplemantation of the trout populations present in each

study section. Rainbow trout {(Salmo gairdneri) was the

preferred experimental speclies because of its greater
sensitivity to flow reductions compared to other trout
species in southwest Montana. Buby Creek also was reported
to have light fisgshing pressure. This reduced the chance of
anglers removing fish from the study sections {MDFG 1976).

Finally, the presence of successive irrigation



o
&
(3]
&
-
SECTION 2
SECTION 3
‘.‘\\\‘
F i
0.5 km
Figure 3, Location of study sections and irrigation
diversions on Ruby Creek {(T95, RIW, S5e¢c. 10-12}

Montana, 1982.
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diversions provided different levels of reduced
discharges in two sectiocns of the stream.

Three study sections, numbered consecutively in an
upstream divrection, were established along the course of
Ruby Creek at 0.64 kilometer {(km}, 2.54 km and 3.34 knm
above the mouth. Sections 2 and | were below successive
irrigation diversions while section 3 was above diversions
and had no artificial flow control. Section 1 was
characterized by a2 pool-riffle channel sgtructure while
sections 2 and 3 had a predominance of riffle~run habitar.
Study sections differed in length, gradient, average width,
sinuosity, and predominant particle size of streambed
material {(Table 23.

Table 2. CGenevral description of study sections, Ruby
Creek, Montana, 1982.

Predominant
particle

Thalweg Gradient Avervage Sinuosity size of
Section distance (%3 widrth streambed
(m) {(m) material

1 123.7 2.2 2.48 1.29 8-20 om

2 106.7 1.6 3.14 1.22 E-20 ¢m

3 133.1 1.3 4.12 1.41 4-15% com




METHODS
Fish Population Manipulation

Emigratvion of rainbow trout from study sections of
Ruby Creek was measured by placing a welr and box trap
{Figure 4) at the upstream and downstream ends of each
sectfion. The V-shaped weilrs were constructed of 1.3 sguare
centimeter (cmzj mesh hardware cloth, supported by steel
fence posts. After the weirs and traps were in place,
resident fish (fish present in each study section before
the start of the experiment) were removed from each study
section by electrefishing with a4 110-volt direct-current
unit. For each expevimental stream section, the rvesident
rainbow trout 2100 millimeter {mm), were removed by
electrofishing and held in tubs. To the resident fish then
were added trout electrofished from Ruby Creek above the
study sections. The sgupplemented group of fish was then
returned into the same experimental section from which the
resident fish had been taken. Before stocking, fish total
lerngth, measured to the nearesf millimeter, and weight, to
the nearest gram {g), were recorded. Resident and
supplemental fish were gilven different pelvic fin clips.
The fish were held dn live buckets until thev recovered
from handling and were then released in the middie of study

sectionsg.
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Fish were allowed to acclimate to test sections for &
days, during which time 2ll emigrants were returned to the
study sectlons. Fish captured in the traps after the
acclimation period, were measured and checked for marks
before being released below sections 1 and 2, and above
section 3. Abundance of fish vemaining in the study
sections was defined as the difference between the
total cumulative trap counts and the initial number and
biomass of fish stocked into the sections at the start of
the study. At the end of the 63-day experiment {July 17~
September 173, fish remaining in the study secticons were
removed by repeated electroflshing passes on ? consecutive
days. Electrofishing was discontinued when nc fish were
captured on two consecutive passeg. Length and condition
factors of fish emigrating from the study sections were
regressed against flow (nearest 28 liters/sec or 1 cfsg) to
determine if there was a differential response among size
classes to decreases in flow. Condition factors, weights
and lengths of fish before and after the experiment were
statlstically compared using the Mann-Whitnev test.
Condition facter (K} was computed using the equation:

5 3
K= weight x 10 /length .
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Habitar Evsluation

Physical characteristics of the study ssctions
(depth, velocity, and channel width) were mapped at four
discharges in gections 1 and 2 and at two discharges in
section 3. Habitat cross sections were established
perpendicular to the flow at Z-~4 m intervals and marked
with wooden stazkes on each bank. Study sectioms 1 and 2
contanined 54 and 44 cross sections, respectively; 132
cross sectlons were established in section 3. A mapping
baseline was established by recording the distance and
compass bearing beiween ¢ross ssction headstakes. The
diztance from the cross section headstakes to the water's
edge was recorded at different flows (nearest 0.01 m) at
each cross section.

Iin each cross section, the distance along the
streambank having overhanging plant material or over—
hanging bank was measured, as well as the distance from
this overhanging material to the water surface and its
width overhanging the stream. Submerged undercut bank and
plant material was also recorded as coverhanging bank.

lternate cross section transectis were used for depth
and velocity mapping. Depth, velocity and predominant
particle size of streambed materiazl messurements were made
along transects at 10 equally spaced points. These sane

cinte were used during all subseguent measurements. Depth
B P
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and velocities were measured with a top setting rod and

Marsh McBurney electronic current meter. Depth was

recorded to the neazvest 1 cm and velocity at 0.6 of the

water's depth was recorded teo the nearest 0.3 centimeter
per second (¢m/s, 0.1 feet per second, ft/sec).

Predominant pavticle size of the streambed material was

estimated with the aid of a meter stick.

Quantity of the following habitat variables was
determined for each study section at each flow:

i. Surface area (SA)Y~totsl area of water
sur face.

2. PDepth area {DAd-surface areaz associated with
water depths of 13 cm or more.

3. Velocity area {(VA)l-surface area with mean
water velocity of G.3 cm/s (0.1 ft/sec) or
less.

4., Overhanging vegetation area (Q0HVi-surface
area of the study section having vegegation
within 30 cm of the water's surface, water
depth of 15 cm or more beneath it and
overhang width of at least 10 cm.

5. Overhanging bank {O0BB)~surface aresz
associated with overhanging bank within 30

cm of the water's surface, having depth of
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at least 15 cm and minimum overhang width
of 10 c¢m.
Habitrat criteria were based on the results of studies
evaluating habitat utilized by trout {Wesche 1974, Stewart
1970, Kennedy and Strange 1982).

Areal habitat variables were measured from haebitat
maps by extrapolating between transects, using a Tektronic
digitizer pad and Geoscan computer program. Linear
interpolation between known values of habitat variables
was used te obtaln estimates between measured flows.

Discharge measurements were made at the start and end
of the experiment in each study secticn and following
major changes in discharge. Staff gauges were placed in
each section, and stage was recorded twice daily. These
data and known discharges were used in developing stage-
discharge relationships for each section, which were used
to predict average daily flows in each section (Figures 5,
6, and 7). Dailly maximum and minimum water temperatures
were measured with maximum-minimum registering mercury

thermometers in the upper and lower study sections.

Computer Modeling of Wetted Perimeter

Hetted perimeter transects (8 each in sections 1 and
2 and 9 in section 3) were established in typical riffles.
Each transect water surface elevation was surveved at

three to four flows, according to Nelson (1980). Water
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surface elevation data were used fto calibrate the wetted
perimeter computer program {Table 3, Nelson [983). JModel
cutput inciuded:

i. Wetted perimeter {(WETP)

2. Average water depth {DBAR)

3. Average water velocity in the transect

cross-section area {(VBAR)

4. Top width of transect {WDTH)

5. Cross sectional area of transect {AREA)
& Maximum water depth {DMAX)
7. Total top width associated with depth of at

least 15 cm {(WTOT)

8. Longest continuous top width asscciated

with water depth of at least 153 cm {(WMAX).

Within each section, physical characteristics of all
wetted perimefer transects were computed asccording te the
wetted pevimeter model and then averaged. The hypothesis
that riffle wetted perimeter can be used a2s a general
index of salmonid habitat suitability in small streams was
examined by relating fish abundance and various habitat
variables to flow-related changes in cross sectional wertted
perimeters. This was done by visual comparison of plets of
habitat variables versus flow and fish abundance versus
flow.

All statistical anaylses were done on a Honeywell CP6

{Level %6/DPS 8) computer with the Biomedical Computer
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Programs (Dixon et al. 1983), Statistical Package for the
Secial Sciences {(Bie et al. 1875} and MBUSTAT (Lund 19833
statistical analysis packages. Palired-compariscn
statistical rests were made using the nonparvametric Mann-

Whitney test {8nedecor and Cochran 1%8GC}).



23

RESBULTS
Abundance Regulation by Low Summer Flow
Population Manipulation

Supplementing the trout populaticns in the study
sections increased the density of ralnbow trout from 0.03
te 1.43, 0.07 to 1.30, and 0.22 to 1.05 fish/meter in
sections 1, 2, and 3, vespectively {(Table 4. Biomass
densities were increased by a2 similar magnitude {Table 5.
Length of experimental fish ranged from 1084 to 315 mm
{Table 63 and length freguency distribution was similar

between sections.
adcclimation Flew and Trout Emigration

During a 6~day acclimation pericd, flow in all
sections generally increased and trout emigratiocn de~
creased {Table 7). In gsecticns 1 and 2 {each below an
irrigation diversion) flow fluctuated from 71 te 274
liters/sec (2.5 to 9.7 cfs) and 140 to 524 liters/sec (4.9
to 18.53 cfs), respectively. Discharge in the natural flow
control section (section 3) increased from 462 to 674
liters/sec (16.3 to 23.8 cfs) during the same period.
PDuring the zcclimation period, the number of fish
emigrating each day vavried but generally decreassd.

Although density was highest and flow was lowest in



24

(XA 0870 L8 01 o%l 280 6L noquleEy £

00y 58°0 e A iyi {00 8 AOGUTEY 4
081 L0 [44 £yl LLT S0°0 9 BOGUTEY 1
(1s38mys 1) {aaim fusty) {(aaiamfysyy)
ApniB-1804 01 aid Arsus( Jaguny A3tsusg Iagumy A318usq ADQ W saTveds UOT3 0BG
BERSIDUT AN0Ag
Arrsusg v 4PNI8-3 804 3881, Apns-a1y

BOUBPUNGE TEITIRUNY

*TR6T ‘wueluol *yeeapn Lqny ue LApnis
IYI ABIJF¥ PUT BA0IBQG UOGIIVAE YOBI UY INGIT Fo (A8I9WM/YsT3) LITSUp puUv ILQURN °y 8TqCBY



25

091 AT RN L6589 L7081 99091 (y°1e L58C

Aoquley s
9L FATR T A G617 98°011T HI811 Ly% 785 BOGUTRY z
8 1€°61 HELT BZHTT  &6LvT 899 27 BOgULTEY 1
(aagom/d) {aszom/8) (1e30m /&)
Apniyseasod 01 ~-21d Artsuag  uBrep Arisuag  3ydrem A31susg  3y8tep saroads U0l oeg
BEEBIDOY INO XY,
Artsueg ¥ Apnys-~3804 e Apnas-aig

{2) sseworg

*Z2861 ‘wumiuol ‘Weain Agqny uo Apnis eyl asile
PUE 2102189 U0T3088 yoes vy 3noal 3o {(m/3) Aarsusp puw (8) sseworg °¢ PI9RL



6

Table #. Size range {mm) of trout found in study sectiomns
1, 2 and 3 before, during and after the
experiment on Ruby Creek, Montana, 1982.

Trout
Section species Pre-study Start Pogt~study
{mm) {mm) {mm}
1 Rainbow 102182 1046=315 113-248
2 Rainbow 141-273 118-2495 128-290

3 Rainbow 117302 117-310 131295
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section 1, fewer fish attempted to emigrate from this
section during the acclimation period (Table 7). Similar
numbers attempted to emigrate from sections 2 and 3. A

larger number of emigrants moved in an upstiream direction.

Flow~Related Changes in Trout Abundance

Rainbow trout responded to flow reductions by
emigrating from experimental sections of Ruby Creek.
Fmigration from the two study sections influenced by
irrigation diversions correlated better with average daily
flow than did emigration from the natural flow section.
Visual evaluation of the plots of numbers and bionmass
remaining, and flow in sections 1, 2 and 3, indicated that
the trout population in section 1 and 3 did not respond
immediately to flow reductions (Figures 8, 2 and 10).
Delayed response was accounted for by lagging flow, which
increased correlations from 0.85 to 0.9% with an li-day
lazg in section 1 and from 0.0% to 0.72 with a 15-day lag
in the control section. Lagging the data resulted in the
loss of one data pair for each day lagged {(Table 8).

These lags were used in all subsequent analyses. Lagging
flow in section 2 increased the correlation by only 1% and
was considered to be bislogically unimportant. Therefore,
data were not lagged before evaluwation. 1In all sections,
flow~associated change in trout biomass pavalleled

ochservations of change in numbers {(Figures &, ¢ and 10}.
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Trout emigration rate increased in all sections as
discharge was decreased 30 te 40% below acclimation flow
{Figures 11, 12 and 13}, even though initial discharge in
sections 2 and 3 was more than doubie the discharge in
section 1. Reductions in discharge of 96 and 95% resulted
in decreases in trout numbers of 48 and 58%1 in sections 1
and 2, respectively. Corresponding decreases in numerical
density were 76 and 73% (Table 4). In the natural-flow
section, the total decrease in discharge of 43% was
accompanied by a 31% decrease in trout numbers and a 53Z7%
decrease in numerical density. Total biomass and biocmass
density decreased as trout numbers decreased in each study
section {(Table 5).

Emigration response of resident trout was less (12.5-
17.2%2) than stocked trout (44.4-59.4%) in each study
section {Table 9). A chi-square gtatistical fest, howsver,
failed to supporit the ohserved difference between the
percentage of resident fish emigrating and their per~
centage in the population. Trout emigrated from the study
gections in an upstream divection between 23 and 99% of

the time {(Figure 143}.
Size Related Response

Mean body length of trout decreased in the two study

sections having large flow reductions {Table 10}.
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Figure l4. Number of rainbow trout trapped in each study
section according to direction of emigration
follewing flow reduction in Ruby Creek,
Montana, 1982.



39

Table 10. Comparison of mean length and weight of rainbow
rrout in each study section before and after the

experiment on Ruby Creek Montana, 198Z.

Section Body size Time Number Mean P-value
variable of fish
1 Length{mnm} Before 177 182 0.174
After 42 171
Weight(g)} Before 177 83 0.000%
Aftrer 42 55
2 Length{mm} Before 140 190 0.103
After 37 174
Weight{g) Before 140 84 0.064
After 37 59
3 Length{mm} Before 140 180 0.52¢9
After 67 154
Weighte{g} Before 140 91 0.738
After 67 86

* Significantly different P < 0.01

Although no significant differences were found between
rainbow trout length distributlions at the start and end of
the experiment (Mann-Whitney nonparametric test, Dixon, et
al. 1983), inspection of the data indicates that larger
fish were more influenced by flow reductions than were
smaller fish {Figures 15 and 16). In the control section,
length distribution remained relatively unchanged (Figure
i7).

Mean body weight of fish in all study sections de-

creased during the study period. Mean weight of fish in



40

T4

101

PERCENT OF SAMPLE

0l | | ' g "~
70 100 130 160 180 220 250 280 310

FISH TOTAL LENGTH, mm

Figure 15, Compavrison of the length distributions of trout
{by 10 nm groups} in ssction 1 at the start and
end of the study on Ruby Cresk, Montana, 1982Z.
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Figure 16. Comparison of the length distributions of trout

{by 10 mm groups) in section 2Z at the start and
end of the study on Ruby Creek, Montana, 1982.
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end of the study on Ruby Creek, Montana, 1982Z.
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section 1 was significantly less at the énd of the study,
while there was no significant difference in welght
hetween the beginning and end of the study in sections Z
and 3 (Table 10). Percentage weight decrease in sections

1, 2 and 3 was 34, 30 and 5%, respectively.
Changes in Conditlon Factors

Condition factors of rainbow trout, groupe& by 20 om
intervals, generally decreased during the experiment in
all study sections {Tables 11, 12 and 13). Decreases in
section 1 were statistically different (P < 0.03) for all
20 mm length groups between 120-239% mm, but not for the
smallest (100-119 mm) or the largest length group {2405~-253%
MM} . In section 2, which was alsc subjected te large
discharge reductions, there was no statistically
gignificant difference in mean condition factor between
the start and end of the study for any size group. Trout
in section 3, which were subjected to natural flow
conditions, had significantly lower condition factors for
all size groups between 120 and 239 mm except for the 200-
219 mm group. At the beginning of the study, mean
condition factors ranged from 1.017 to 1.598 in section 1,
0.600 to 1.096 in section 2, and 1.008 to 1.168 in section
3. in section 1 the largest decreases in condition
hetween the beginning and end of the tests were 42 and 517

in the two smallest size groups (100-119 mm; 120-13%mm).
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Table 11. Conmpariszon of condition factors of rainmbow trout
stocked, those emigrating, and those remaining
at the end of reduced flow experiments in study
section 1, Ruby Creek, Montana, 1982.

K-value Mean K Mesn K
e range Time of Mumbar ol star {-and sTAr -l rs
Ay T ian s Fishimm) experiment Fisn Hin. Mean Han. Puyvaluer Fovalue
tan-119 Sterr &
Emigrating i P e e
End 2
Ho.{Tiwigsing 4(68)
Sear: 3t 0.954
fmigrating i 5,652 B
£nd i 0.56%
N R Ymlsslng 11(35)
HA0-15RY Start ] 0. 943
rating 14 G.754 Cwd
g (U131
Ne . [ZYmisaiag B{2&}
Start L4 1076 218 HAE: Y
Enigracing ? 4,652 9. 881 L0 CL LRI es
fad 3 G, 823 (-3 .57 4
%o (% imissing [A¢LH
PAG-19% Start 28 . B84 1,240 2.%37
Emigrating ih Q. 742 0.9:% i.:B1 TR
Ead & . 830 4 Bhd 1,062
No . {X)missing a{29)
Start 22 G BS99 1.126
Fmigrating 15 0.759 G, 956 G 0GRS LLH2s
End & 3,823 0,931
Bo{iimizsing 1943
frare 0 1022
Emigrating 15 7.751 0 964 ot iad
End 3 2.R37 2,964
B iymissing 2{1¢
Srare 17 P.070
Zmigrazing i3 (933 368 LI
End 3 1L0%
o .{X)uissing {16}
1H0-27% Start 5
Bmigrating L T S T v T S o ) S
End O
Ho.{Limiasing 1024}
Srarte L T L2
migrating L I e
End b
¥o.(f)missing S{0}
mrerali osizex Stari 17z 744 1,233 32
Emlgreviag Edl 0,852 0. 830 L3 113
End &7 4.55% 9,929 IoE0h

LGRS

smriy diffarent P <
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Table 12. Comparison of condition factors of rainbow frout
stocked, those emigrating, and those remaining
at the end of veduced flow experiments in study
section 2, Ruby Creek, Montana, 1982,

K-valug Hean K Mean ¥ Mgan &
Siz2 vange Time of Wunber of e srarc-end starr-emiprating emigrating-end
Section of fish{an} experipent fish Hin. Hean Hax. F-vaiue Povalue -

=114 Stars 1 0.60%
Emtgraling 1 GBI e e —————
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Table 13. Compavison of condition factors of rainbow trout
stocked, those emigrating, z2nd those remaining
at the end of reduced flow experiments in study
gsection 3, Ruby Creek, Montana, 1982.

Ewvalue Mear K Mean K
Sleze range Time of Mumber of start{-emigrsting
Seatioan af Fishimm} experleent Figh .
3 Srart ?
Emigrating &
End ul
He . (X eiswing TLL0)
126i-13% Starg 14 1000
fmigretiog 2 1057 I PEIT
ing 5 0,931
Ho.{I)miasing G55}
FEL R 2i ;. B8 1.168
3 G.81% 8,963 . B0 xS 1,931
3 15 0.8484 0.982
to.{Timlsalng EIS TN
1A5-178 Graze 25 G963 1
Emigrating 5 0.830 H G. OORAE
End iz 4,880 1.
Mo . {X)missing 8321
Start iz 1003
Emigrating 7 0,903 LR eI R 0, 502w fLA6E
Engd § .78}
Ko {%rafssing +3{+23)
Srart 133 2. BAT [
Emlgraring 5 a.%3 1097 a.073 0. 037
End 7 0,925 1.15%
Ho.(Rimirsing {34
2202%G Stary 0,547 1088
Emiprating 1 074 . %%9 .07
E, 7 0.841 0. 997
No.{Zlmlasing N ee i}
PN SLert 11 0, %4 1.092
Zmigrating 2 ©.853 0.974 . 157 8]
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2642 7 Start 8 . 981 L. 068 .28 . . »
Emigrating 4 &, 558 5. 599 Tl G697 0.23% B2
[ 4 G.%35 S04 £.137
Yoo (Lleissing LG}
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Es i o, 88%
do{Irmissing o)
o 2 . 597 1L.008 1.31E
2 0,835 .55 O O G439 e
9 mmmme mmmem e
BEDY
] &0 0,838 RN 2.158
Oversii wizes fen c.358  0.988  1.3%5 .09 0. pones
i G863 0,932 1.2
19014)
# < 0.0%
P <23




47
In sections 2 and 3 the largest decrease in condition of
any size group was 11% and 30%, respectively. In general,
emigrating trout in all size groups and sections were in
slightly poorer condition than those rewmaining until the

end of the study {(Tablesgs 11, 12 and 13).

Post=-Study Densities

Supplemented trout populations in the study sections
were not reduced to pre-study levels by flow reduction
experienced during the 63~day study pericd (Table & and
5%. Criginal numerical densities (fish/meter) in sections
1, 2 and 3 were (.12, 0.907, and 0.22 raiobow trout/meter,
respectively. These were increased to 1.43, 1.30 and 1.05
rainbow trout/meter at the beginning of the study. When
the study was completed Iin September, numerical densities
had decreased to 0.34, 0,353 and 0.30 in sections 1, 2 and
3, respectively. These densitiesg were 18C, 400 and 12772
larger than we observed in study sections before the
experiment (Table 4. Post study biomass densities had
increased 8, 276 and 140%Z in sections 1,2 and 3,
respectively {Table 3}. Secticns 1 and 2, subijected to
gimilar large flow reductions (%6 and %5%, respectively),
had sdimilar rainbow trout densities during a2ll phases of

the study. The coentyrol section, with natural flow
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reduction of 57.2%, had higher trout densities both before
and after the study than in the sections sublected to large

flow vreducticns.

Fish Not Accounted For

A portion of fish in each study section could not be
accounted for at the end of the study {(Table 14}.
Table 14. Fish numbers and biomass not accounted for by

emigration from sections 1, 2, and 3, Ruby
Creek, Montana, 198Z.

Trout unaccounted for ZLoss
Section Numbers Biomass{g) Numbers Biomass{g)
I 39 4692 2z 3z
2 24 2009 17 17
3 19 Z110 14 16

Electrofishing upstreanm from section 1 to a natural fish
barrier produced four marked rvainbow trout. These fish
may have escaped before the study started, when the upper
fish weir failed. Electroefishing immediately above
section 2 1n a large pool produced no marked fish. HNo
attempt was made to recover lost fish above section 3. The
largest pervcentage of missing fish in all three study

gsections were from length groups less than 140 mm total

length {Tables 11, 12 and 133.
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Flow %elated Decreases in Habirar Availabilicy

Habitrtat Differvences

Section 1 was characterized by 2 pool-riffle channel
structure while sections 2 and 3 had a predominance of
riffle-vun habitat. Because of flow differences between
sections, habitat data were collected at different
discharges. This makes comparison of channel structure
differences between sections difficult (Figures 18, 19 and
2073 .

Mean depth was essentially the same in all three
sections, although discharge in sections 2 and 3 was 2.5
and 2.9 times lavrger, respectively, than in section 1 at
the initiation of the study {Table 15). Initial mean
thalweg depths were similar in sectiens 2 and 3, but was
11% deeper in section 1. At the end of the study, mean
depth and mean thalweg depth in sections 1 and 2 but were
about 50% ehallower thanm in section 3. Hean velocity at
the beginning of the study was similar in sectlons 1 {61
em/sec) and 2 (64 cw/sec); section 3 had a slightly nighev
mean velocity (73 cm/sec). Mean velocity had been reduced
80% in section 1, 71% in section 2 and 19%Z in section 3 by
the end of the study.

Tue to flow and channel differences, the orvder of
percent change in the five habitat variables measured

differed between sections. All variables except veloclty
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area (surface area with mean velocity < 0.3 cm/sec (0.1

fr/sec) decreased as flow decreased {(Table 163 .

Decreases in Habitat

in bhoth reduced flow sections, 100%Z of usable over-
hanging bank cover (OHB-surface area assoclated with
overhanging bank within 30 em of the waters surface with &
depth of > 15 em and a overhang width > 10 cm) was lost.
in section 1, where total flow reduction was 97%, depth
area (DA~surface area with associated depth of 13 cm or
more} was reduced $1.8%; overhead vegetation {(OHV-surface
area having vegetation within 30 cm of water surface with a
depth of » 15 cm and overhang width of > 10 cm} by 73.3%
and total surface area {8A4) by 45.2% (Figure 21). The 96X%
decrezse in flew in section 2 was accompanied by a 100X
reduction in OHV followed by a reduction in DA of 58Z, VA
of 97%, and SA of 25.87% (Figure 22).

In the natural flow section, discharge decreased only
57.2%. Accompanying decrease in OHV was 38.37% followed
by a 28.1% decrease in DA and an B.2% decrease in SA

(Figure 23). There was no OHB cover ia section 3.
Habitar Cerrelations

A11 five habitat variables were highly intercorrelated
with the exception of VA in section 1 which had lower

correlation with other habitat variables. Similarlily each
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habitat wariable had a high positive correlation with flow
except for VA which was negatively correlated in all
sections and was poorly correlated {(r= ~0.60) in section 1
{Tables 17, 18 and 19}. With the exception of 54 in
sections 2 and 3, all other correlations were above 0.93.

In general, trout numbers and biomass were not as
highly correlated with habitat variables as was flow. The
exception was section 1 where all habitat-flow corre-
lations were above 0.95, except for veloclity. In section
2, the zorrelatiocn between COHV and numbers was (.90.
Gther variables had correlations with numbers ranging from
0.73 to 0.83. In section 3, no habiitat variable corre-
lated highly with numbers. Correlations ranged from 0.65

to U.585.

Temperature

Mean dailv water temperature, measured in sections 1
and 3, generally decreased during the study perviod. The
decrease in water temperature ogccurred after most of the
fish had emigrated from study sections. Water temperature
ranged from 1 te 17 € and 1 to 18 C, in sectiocns 1 and 3,
vrespectively (Figures 24 and 25). Average mean daily
temperatures, over the study period, were 11.1 C in

secrtion 1 and 10.8 € in section 3 {(Table 203.
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Figure 24, Average daily water temperatures {€) of section
1, Ruby Creek, Montana, 1982,
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SECTION 3
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¥Figure 25. Average dzlly water temperatures {CY of section
3, Ruby Creek, Montana, 1982.
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Wetted Perimeter as a Habitat Index

Wetted Perimeter and Habitatr Correlations

Wetted perimeter correlated highly with the five
habitat vavriables in 21] sections, except for velocity
area in section 1. Correlation of wetted pervimeter with
habitat variables in section 1 ranged from a low of ~-0.122
for veloecity avea {(VA) to a high of 0.979 for depth arez
(DA, Table 17). In section, Z wetted perimeter corre-
lation with habitat variables ranged from 0.8%7 CHV to
0.996 for SA {Table 183}. In section 3, the correlation
coefficients between wetted perimeter and habitat
variables depth area (DA}, velocity area {VA}, and
overhanging vegetation {(OHV) were $.%997. 7The lowest
correlation in section 3 was with SA {(r= (.814, Table

193.

Trout Abundance and Wetted Perimeter

Changes in wetted perimeter were parvalieled by
changes in trout numbers in secticn 1 {(Figure 26) with a
correlation of 0.892 (Tabkle 173}. Werted pervimeter and
trout numbers decreased vapidly as flow slowly decreased
helow 140 lirers/sec (4.9 cfs).

Trout numbers decreased in section 2 before large
decreases in wetted perimeter occurred {Figure 27}). Trout

number and wetted perimeter had a correlation of 0.766.
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Trout number in secticn 2 decressed rapidly with small
decreases in discharge below 360 liters/sec (12.7 cfs).
Wetted perimeter did not decrease rapidly until flow was
reduced below 130 liters/sec or 4.6 cfs.

In the natural flow section {(section 3} the corre-
lation between trout numbers and wetted perimeter was
0.717. With a 15-day lag between flow change and trout
emigration response, trout numbers stabilized as flow
stabilized at about 390 liters/sec or 13.8 cfs.
Calculated wetted perimeter decreased most vapidly as
discharge was reduced below 460 liters/sec (16.4 cfs,
Figure 28). Increased rate of trout emigration
corresponded reasconably well te this inflection point in
the wetted perimeter curve.

The wetted-perimeter computer model predicted the
foliowing associated parametersﬁ average Ccross section
depth (DBAR), average cross section velocity (VBAR}, cross
section width (WDTH}, cross section water area {(AREA)},
maximum cross section depth (DMAX), total top width having
a depth of 15 ¢m or mere (WTOT), and the longest
continuocus top width with depth of 15 cm or more {WMAX).

Order of importance of wetted perimeter habitart
variables, based upon correlation with trout numbers, was
not consgistent between study sectiocns. In secticn 1 all
variables except VBAR and WDTE had correlations with

numbers of trout larger than 0.9%3, indicating that they
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are all highly important. In section 2 VBAR was the only
variable with a correlation exceeding G.90. WDTH had a
correlation of 0.75% and each of the rvemaining five varia-
bles had correlations ranging from 0.83 to 0.89%. XNo
variable was highly correlated with numbers in section 3.
Both WDTH and WTOT had a corvelation of 0.72, while other

wetted perimeter variables had correlations of 0.64~0.70.

Variables Versus Trout Numbers

Recause of high intercorrelation of variables,
strandard multivariate tests were unsultable for
statistically evaluating the order of importance of habitat
components. In an attempt to explain the observed increase
in emigzration in all study sections when flow was reduced
30-40%7 of inital discharge {Figures 2%, 30 and 31}, percent
change in the five habitat variables and eight wetted
perimeter variables were plotted with percent change in
initial flow. Visual evaluation of these plots indicated
that no habitat variable decreased in pavallel with trout
numbers. The pattern cof decrease of wetted perimeter
variables WTOT and WHMAX, however, was similar to the
decrease in numbers and most closely explained the response
of the fish population. Each of these variables is a

measure of the riffle habitat deeper than 13 cm.
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DISCUSSION

Abundance Regulation by Low Summer Flow

Density of trout in supplemented stream sections of
Ruby Creek was not reduced to pre-~study levels during the
63~day experiment. Numerical density in sections 1, 2 and
3 was 180, 400 and 127% larger, respectively, at the end
of the study while biomass density had corresponding
increases of 8, 276 and 1407%. The smaller increase in
biomass, compared to numbers, in all sections was due to
emigration of larger fish and to loss in weight of experi-
mental trout.

The reason for the increase in biomass and numerical
densities of rainbow trout at the end of the summer low
flow period in all sections, compared to initial
densities, is not clear. Possible explanations include
alteration in soccial tolerance by forced initial density
increases, the possibility that summer low flow is not the
limiting factor omn Ruby Creek, or that the study was not of
a long enough duration to elicit a total response.

Al teration of sccial teolerance by initial steocking
density is mnot known to have been rveported in the
lirerature. However, Robert G. White {unpublished data,
Montana State University) has observed in previous
reduced—-flow experiments in an artificial channel that

under identical flow and habitat conditions, the larger
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the 1lnitial stocking density of juvenile rainbow-steelhead
trout, the larger the stabllization number {at constant
flow) and the larger the ending density following severe
flow reduction. If these observations apply to natural
streams, the large number of rainbow trout introduced into
experimental sections could have influenced final density.

Another consideration is that factors other than low
summer flows regulate vainbow trout abundance in Ruby
Creek. Abnermally high spring scouring fleows have been
shown to have a negative influence on trout populations
{Nehring 19833. In Ruby Creek, however, there is neo
evidence that spring scouring is a common event. Winter
mortality is also known to be large in many streams {(Hunt
19469, Vincent 1984). Because of the relatively small size
of Ruby Creek and the harsh winter conditions in the
drainage, winter habitat conditions could influence popu-—
laticn abundance.

Lastly, tests during the present study may not have
been of long enough duration for a total response to be
seen. This, however, seems unlikely since flow and number
in all sections had stabilized 12 or more days priocr to
the end of the study.

The effects of long term summer dewatering on trout
populations in riffle~run habitat maybe illustrated by

comparing initial rainbow trout densities from sections 2
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and 3. Section 2 has historically been dewatered from
sugust to mid-September (MDFWP 19811 while section 3 has
not been influenced by artificial flow reductions.
Al though habitat in the two sections is very similar,
initial numerical demsity of rainbow trout imn the
unaltered flow section was three times that in the section
influenced by irrigation diversion, while biomass density
was four times larger. These comparisons support the
experimental observations that trout populations respond
negatively to changes 1in strezam discharge. The larger
magnitude of initial biomass difference between the
sections alsoc illustrates the finding that larger trout
are more influenced by flow reductions than are smallex
trout. From these comparisons it appears clear that low
summer flow has a regulating influence on rainbow trout
populations, even though other factors guch as winter
habitat may reduce the population further.

Rainbow trout abundance and biomass decreased as flow
decreased in all study sections. In sectioms 1 and 3,
filow related emigration of rainbow trout was not shserved
until 11 and 15 davs after major flow reductions. The
mechanism for this delayed response is not knmown, but I
hypothesize it to be due to social interactions caused by
increased trout densities.

Other researchers have rveported reduction in trout

numbers as well as lags in response toc flow changes.
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Kraft {1968 and 1972) examined the relationship between
brook trout in Rlacktail Creek, Montanas and flow-related
changes in habitat. During a 3-month study with 0%
reduction in flow, trout abundance in the reduced flow
section decreased an average of 627 in runs, compared to
20% in control*section.runs, and movement ocut of the stream
section peaked 10 days following flow reduction (Kraft
1972). Trout numbers in pao}s 0f the test sections
generally increased, while trout numbers in pools of a
control section decreased more than 14%. Kraft's (1972}
data suggest that trout habitat in runs becomes less
suitable with decreasing flow. Trout distribution first
shifted from rung to pools and then density~related social
mechanisms resulted in emigration of a portiom of the
population.,

Bachman (1984) described a density-related social
mechanism of an undisturbed population of wild brown trout.
He found that at high population density, energy saving
foraging sites that allowed driftr feeding with a minimum of
energy expenditure wevre a limiting factor. This was
indicated by agonistic encounters associated with foraging
sites and not with refuge sites. Krueger {(1979) examined
the respense of juvenile chinoeok salmon to decreased
discharge in a straight, narrow, vriffle-run artificial

channel. When discharge was rteduced 94% over a 48-hour
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period, fish emigrated from the channel until 33 and 467% of
wild and hatchery-teared fish remained, respectively.
¥Krueger found that substantial numbers of emigrants were
captured in traps the day following discharge reduction
from 17 to 3 liters/sec.

Flow related rainbow trout emigration was primarily
upstream from the study sections. Movement upstream when
discharge is reduced has been found by Kraft (1972) and
Fasterbrooks {1981). Clothier (1953 and 1954) reported that
vrainbow trout im irrigation canals consistently moved
upstream following gradual decline in flows, White et al.
{1981) alsc found that most juvenile rainbow-steelhead
trout emigrated upstream in response to flow reductions.
Easterbrooks (1381} observed similar upstream movement in
flow reduction tests with wild rainbow and cutthreat trout.
He speculated that upstream emigration may be triggered by
an instinet which stimulated trout to move upstream in
search of cool tributaries or springs, thereby increasing
the chance of survival during periods of low flow and high
water temperature in downstream, malnstem stream reaches.
Another possible explanation would be that trout move
upstream to seek preferred habitat above fish with socecial
dominance.

Mean trout length decreased in the two study sections
having large flow reductions. Although not statistically

significant, the data may indicate that larger [ish were
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more influenced by flow reductions than were smaller fish
(Figures 15 and 16). This suggests that larger fish
emigrated from the reduced flow sections due to reduction
in habitat rather than food. if food were limited, larger
dominant fish would have advantage over smaller fish, and
one would expect a larger rvrelative percentage decrease in
aumbers of small trout. White et al. (1%81) reported
similar response of juvenile steelhead-rainbow trout in
reduced flow tests conducted in artificial channels. They
also documented that trout left experimental channels in
response to reduced flow before aquatic invertebrate
abundance was reduced. Food availability was not
investigated during my study.

Al though emigration vesponss of rainbow trout in the
present study provided no indication that food was
jimiting, mean weight of fish in all study sections
decreased during the study. Likewise, condition factors
of nearly all size groups of trout decreased. In general,
emigrating trout had only slightly poorer condition than
those remaining until the end of the study {Tables 31, 12
and 13). Decrease in overall mean weight in reduced flow
sections was, in part, dug to a disproportionate number of
large fish emigrating from test sections. Decrease in
mean condition, however, was not a vesult of size related

emigration.
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The ohservation that mean weight and condition
decreasad even in the control section, where flow related
food limitation would not be expected, makes intevpre-
tation difficule. If emigrating fish had much lower
condition than those remaining to the end of the study,
the fish may have been food limited and were leaving the
area because of social interaction. A similar conclusion
could be reached if the largest size groups in each
section had not lost condition. Although not statisti-
cally significant, fish in these size groups in alil
sections lost condition during the summer study period,
when condition should have remained the same or increased
{Cariander 1%69).

1t is thought that the numbers remaining in study
sections were within the social tolerance for rvainbeow trout
during the present short-term study. Al though quantity of
food may have been less than optimum, it apparently was not
in short enough supply to eliclt further demsity
adiusiments.

The number of figh unaccounted for during the present
study was comparable to losses reported during studies
with similar designs. Krueger {1979) reported loss of
juvenile chinocok salmon between 3 and 21%Z of the stacked
fish. White et al. {1981) reported 11 to 27% unaccounted
fish during the 1978 and 1979 flow tests. A higher per-

centage of biomass, compared with numbers, remained
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unaccounted for during the study in sectiocns 1 and Z.

This is probably a result of the fish losing wedight during
my study. The loss of trout numbers during thisg study is
iikely due to the reduction in cover with decreased
streamflow which I hypothesize increased the chance of

predation by kingfisher, great blue heron and river otter.
Fiow Related Decreases in Habitat Availability

Sections 7 and 3 were characterized by a run-riffle
habitat structure. Study section 1 was characterized by a
riffle~pool habitat sturcture. This habitat difference 1is
best illustrated by comparing mean transect and thalweg
depth between sectioms. Al though streamflow at the
initiation of the study was more than 50% less in the pooli-
riffle section, mean depth wes essentially the same and
mean thalweg depth was 11% greater than in the run-riffle
channels.

In section 3 (natural flow} lagged trout numbery
stabilized as discharge stabilized at about 3530 liters/sec
or 12 cfs {Figure 10), while numbers in section 2 continued
to decline as flow declined {Figure 9). This interpre-
tavion 1s baséé on the assumption that the 15-day lag in
response of the trout population fo fiow change in section
3 is correct. Since essentially no lag wasg seen in section

7 the mixture of habitat characteristics within gsections
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must be substantially different because of the observed
difference in rfrout response ito decreases in flow. If the
habitats were the same between sections 2 and 3 a similar
response regarding the amount of time elapsed betweén flow
reduc tion and fish emigration would have been expected.

Temperatures during the study were well within the
tolerance range of rainbow trout and would not be expected
to increase mortality or negatively influence growth
{Carlander 1969). Relatively similar temperatures in
secﬁions 1 and 3 during extreme differences in flow and
the lower vavriation of water temperatures in section 1,

suggest that ground water influenced water temperatures in

section 1.

Wetted Perimerer as a Habltat Index

Most habitat variables evaluated were highly corre-—
iated with one ancother as well as with flow. Because of
this, multivariant statistics were unsuitable for dis-
tinguishing which combination of variables best explained
the response of experimental fish pepulations or the order
of importance of these variables. Although statistical
evaluation was determined to be inappropriste, plots of
percentage change in each habitat and wetted perimeter
variable with percentage change in flow were visually
evaluated. The observed rate of change in thesge variables

was then related teo observed percent decrease in rainbow
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rrout abundance with percent decrease in flow. Of the 13
variables examined, change in only tweo, total top width
associated with despth of at least 15 cm {WTOT) and longest
continuocus top width assoclated with a depth of 153 em or
more (WMAX}, clesely corresponded te change in numbers
with flow {(Figures 29, 3C and 31). Beoth of these
variables were generated by the wetted perimeter model and
are a measure of gquantity of riffle depth greater than 15
£m .

Other researchers have also reported that depth is
important in explaining fish abundaace in streams. Stewart
{1970) found that of 15 wvariables evaluated, mean depth was
the single most significant factor gifecting abundance of
wild brook and rainbow trout. He speculated mean sectlion
depth was an index of deep water suitable for fright cover.
Everest {196%9) correlated density of juvenile steelhead
trout and chinocok salmon with substrate size, bottom
velocity, surface veloecity, depth, and density of other
species. He found that depth was the only variable with
significant correlation with density of age O-chinook
salmon. Iin one stream, depth alsc accounted for the
largest variation in age 1 steelhead trout density.

White (1976 attempted to predict sffectis of flow
reductions on rainbow trout populations in the Teteon River,

Idaho. He predicted that cover, in the form of sufficient
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depth, would be limiting as discharge declimned in run-
vyiffle channels. Easterbrooke {1981} reported that wild
rainbow and cutthroat trout exhibited a linear decreazse in
abundance with reductions in depth. This study was
conducted in laboratory channels ipn which variables other
than depth remained constant. He also found that wild
rainbow trout from streams with different levels of pro-
ductivity responded to depth reductionsg differently. CGiven
equal flow and depth ceonditions, abundance of experimental
fish from a more bilolegically productive stream stabilized
at a higher density in laboratory channels.

If the results are representative of the habitat
types studied it appears that riffie welted perimeter may
not be a good index of summer habitat suitabdility for
rainbow trout in viffle-run habitats in small streams
similar to Ruby Creek. Although the wetted perimeter
curves were considerably different between the two run=-
riffle sections (sections Z and 3}, and the lowest flow was
92% legs in section 2 than in section 3, similarity bDetween
sections is illustrated by similar flow-related response of
the fish population {Figures 12, 13, 27 and 28). Im both
sections, as discharge was reduced below approximately 400
liters/sec {14 cfs), the rate of change in frout abundance
increased. If the inflection polint on the wetted perimeter
curve for ssction 2 were used as the recommended flow

{about 150 liters/sec or 53 cfs}, this recommendation would
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substantially underestimate the approximate 375 liters/sec
{13.2 cfs) which appeared optimum for my experimental fish
population {¥Figure 27). In section 3 there were two
inflection points {Figure 28}; one at about 475 liters/sec
(17 cfs) and one at about 300 liter/sec (11 cfs). The
first would overestimate the amount of water needed while
the gecond would bhe s}ighfiy less than coptimum.

In contrast, the inflection point on the welbted
perimeter curve for the pool-rifflie habltat in section 1
(Figure 26) corresponded well with the flow (150
litersisec, 5 cfe) at which rvate of trout emigration
increased substantially. Since only one pool-riffle
section was studied {(section 1), it is not known if these
findings are characteristic of small stream pool-riffie
habitat in general.

Annear and Londer {1983 found that subjectively
chosen inflection points on average-vriffle-wetted
perimeter curves overestimated minimum flow 77% of the
time, when compared to a validated habitat quality index
{HQI Model II, Binns 1979;. These results are in contrast
to findings of the present study where average tviffle
wetted perimeter inflection pointsg either predicted flow
needs accurstely or underestimated flow meeds as deter~-
mined from trout smigration response Iin three study

sectionsg. The inconsistency in rvesults between studies
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may be explained by the gquestionable appropriateness of
the HQI method for Montana streams. The HOI method of
estimating trout standing crop was gvaluated during a
study of the effects of grbanization on the physical
habitat for trout in streams. White et al. (1983) found
that trout standing crops predicted by the HQI method
were poorly correlated (r= 0.228) with actual standing
crops found in studied stream reaches. Subjective habitat
parameter measurements required in the HQI model may
explain the poor correlation betwesen predicted and actusal
standing crops of trout. The subjectiveness of choosing
wetted perimeter inflection points may also be responsible
for inconsistencies between Anunearx and Coender (1983} aund
the present siudy.

In conclusion, the wetted-perimeter method of
determining minimum strean discharge on small streams does
not appear to be a consistent index of rvainbow trout
habirat suitability. In pool-riffle habitat of Ruby Creek
the method worked weil. In vun-riffies habitats, however,
this approach may underestimate the amount of waterv
necessary to maintain rainbow trout populations at a
reasonable level.

Since my study was conducted on habitat types in only
one small stream and for only one Summer Season, results
should be applied with caution. Long ternm research should

be initiated to validate findings and to gain a betterw
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understanding ¢f the trout sbundance~hablitat relaticnship,
particularly related to the guantity of vifflie habitat
with depths greater than 15 cm. Researchers should
examing the effects of stocking densities and the
influence of flow reductions on the inverfebrate food
hase. Additional habitat variables which are not highly
intercorreiasted should be sxamined. Also the validity of
using the inflection point on the curves of longest
continuous riffle top width with depths > 15 cm and total
auantity of riffle top width with this depth character~
istic for recommending ipstream flows in small streams

should be examined.
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Table 20. List of ranges and means of daily water
tempervatures in section 1 and 3 Ruby Creek
Momtana 1982.

Ssection 1 (L) Section 3 ()
Date Range Hean Range Mean
=24 2.0-10.0 5.0
25
256 8.5-11.0 9.8
27 8.5-17.% 13.90
28 9.0-16.0 12.5
29
30 .
31 13.0-16.0 14.53
8-1 12.0-16.5 14.3 F.0-18.0 12,5
2 7.0-17.0 12.0
3 7.0-16.0 11.5
4 7.0-15.0 11.0
5
5 9.0-14.0 11.35 7.0-12.0 9.5
7 11.0-153.0 13.0 7.0-17.0 12.0
8 11.0-12.0 11.5 8.0-16.0 12.0
9 11.0-14.0 12.5 8.0-15.0 11.5
15 11.0-15.0 13.0 8.0-17.0 12.5
11 11.0-14.0 1Z2.53 7.0-17.0 12.0
12 7.0=-15.0 11.0
13 . 0-14.0 11.5 £.0-16.0 11-0
14 11.6~13.0 12.0 8.0~-16.0 12.0
15 11,0-14.0 1Z2.5 8.06-17.0 12.5
156 9.0~17.G 13.0 %.0-17.0 13.4
17 B.0-16.06 12.0 2.0-16.0 12.0
18 8.0-16.0 12.0 8.0-16.0 12.0
19 %,0-17.0 13.0 §.6~17.0 12.5
20 8.0-15.0 12.0 8.0-15.0 11.5
21 9.0-158.5 12.3 £.0-16.¢ 12.0
22 2.0-16.0 12.5 7.5-16.0 11.8
22 8.0-16.06 12.0 6.5-16.0 11.3
24 §.0-15.5 11.8 $.35=-15.5 11.0
25 8.0-15.0 11i.5 .0-15.0 1C.5
26 2.0-14.0 11.90 6.5~-14.5 10.5
27 8.0-15.5 11.8 6.5-16.0 11.73
28 g.5-14.0 11.8 7.5~-15.5 11.5
29 $.0-14.5 11.3 7.5-14.5 11.0
30 10.06-13.0 11.3 0.0-14.0 12.0
31 £.5-13.5 11.0 5.5~-14.5 10.5
9-1 7.0~14.0 18.3 6.0-14.0 10.0
2 85.0~14.0 11.0 7.0-15.0 11.90
3 8.5-16.0 12.3 7.5=15.0 11.3
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Tabhle 20 {continued)

5833@3585@8@5

1999@@?8894%%
gt i el

O L2y M Oy Oy

2 ¢ = 8 8 » e 3 3 o WYy (D
W o s b e £ 0N el ©) °
pond gk gk ] g ped gl g g el O P GO
L L N
G5QO§$GGGEGQG
& 2  * B @ @
855%56556&115
LRV B e e I o oy O ey O O
LI - B @

YO D e e o BN SRR B VLR BT
ol gl gk ped et g

WYy W O O @y

# 8§ v & & % I T T s SO
WY o ey W WD WYy [ P ® ®
pob g ged Tod pd e e L~ # B I
[ S B oy oo i
B B O Lt o e o e i 0
N B - - N
[aeB ARV - o T WY P € BN vl )
e

&
10
i1

[Ea TN w I o

Overall mean=10.8

H=100

Overall mean=11.1

Standard deviation=3.8(C)

H=84
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