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Atmospheric deposition of mercury (Hg) has been shown
to be a significant source of Hg on the landscape (Rada
et al. 1989:; Swain et al. 19492) and is believed to contribute
to increased Hg cencentrations in aguatic food webs
{Sorensen et al. 1994; Edwards et al. 1999), Methylmer-
cury {(MeHg) is the organic, bioavailable form of Hg that
accurmulates to toxic levels in top-level predators in aquatic
systemns (Suvedel et al. 1994), Although limnological con-
ditions in lakes and rivers can affect Hg methylation and
concentrations in fishes, these relationships often vary
smong water bodies and fish species {(McMuriry et al.

1988, Bodaly et al. 1993} Thus, regional studies are nee-
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ded 10 identify mechanisms of local MeHg production and
factors associated with Hg contamination in fishes.

The Prairie Pothole Region of Nuorth America has a
unique variety of nawiral wetlands and glacial lakes that are
impostant for {ish, shorebirds, waterfowl, and humans,
Cyclical climate, characterized by extended wet-dry peri-
ods, cause high variation in water surface area within the
region {Rosenberry 2003}, For example, consecutive years
of high precipitation during the mid-1990s caused dramatic
surface area increases in many glacial lakes and wetlands
of eastern South Dakota. After iske levels increased, sev-
eral [ish populations were found to contain elevated Hg
concenirations (>1 pg/g), prompting local officials (o post
fish consumption advisories (South Dakota Game. Fish and
Parks, 2006).

The discovery of elevated Hg concentrations in fishes
was surprising because (1) there were no apparent point-
source inputs of Hg, and (2) the Hmnological conditions
of most of these lakes {eutrophic, high pH) generaily do
not favor Hg methylation or bicsccumulation (Grieb et al.
1094, Pickhardt et al. 28023 Moreover, lakes that expe-
rienced large increases in swrface area generally contained
fast growing fish populations, a situation that usually
lowers Hg concentration due to growth dilution {Rodgers
and Qadri 19487; MacCrimmeon et al, 1983} In this study,
we document changes in lake surface area for glacial
iakes in the Prairie Pothole Region and relate this to Hg
concentration in adalt walleye (Sander virreus). Although
a similar phenomenon is known [0 oCour In reservoirs
with fluctuating water levels {(Jackson [98Y¥, Snodgrass
et al, 2000 Sorensen et al. 2005}, widespread effects of
surface area changes on Hg concentrations in fishes have
not been documented in natural, glacial lakes. We
hypothesized that increases in lake surface area enhanced
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Hg methylation and resulted in elevated fish Hg concen-
trations.

Materials and Methods

We studied 18 lakes within the Northern Glaciated Plains
Ecoregion of eastern South Dakota (Fig. 1), Lakes in this
region range from sutrophic to hypereutrophic and gener-
ally do not thermally stratify during summer monshs {i.e.,
polymictic mixing cycles). Changes in lake surface area
were determined using Landsat 5 imagery (htind/
wiww sdview sdsiate edu) collected during the late 1980s
{dry period) and early 20008 (wet period). Lake surface
areas, determined {rom images obtained in 1987 and 2000,
were digitized in ArcMap 8.1 to guantify the surface area
{ha) of each lake for both time periods. We used regression
analysis 1o assess the relationship between Hg concentra-
tions in walleyes and percent change in surface area (SA)
of lakes between wet {2000) and dry {1987) years.

Adulr walleyes (330-500 mm total length TL) were
coliected during summer months {June through Aungust)
from 1996 to 2005 using a combination of electrofishing,
frap-nets, and experimental gill-mets. Muscle samples
{~2 g) obtained from 1996 10 2004 were collected from
whole walleye fillets, A composite sample was obtained
from five similar sized walleyes {50 mm size categories)
then homogenized and analyzed for total Hg. Three o six
composite samples were obtained from each lake and
averaged to quantify walleyve Hg concentration. In 2005,
eight additional lakes were sampled and waileye fllets
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Fig. ! Location of 18 study iakes in eastern South Dakota

{1013 fish/lake) were analyzed individually for total Hg
concentration, and then averaged to determine mean Hg
concentration for the lake. Al fissue samples were ana-
lyzed for total Hg using cold vapor atomic Huorescence
spectrometry (Jones et al. 1997, Collin-Hansen et al. 2005,
Yu 2005}, The standard reference material {SRM) used was
Mational Institute of Standards and Technology (MNIST)
#2976 muscle tissue. Our SRM contained 54.6 (2.1} ngfg
total Hg. Fish samples were spiked at a level of either 0.5,
1.0, or 3.0 ngfg, with a detection limit of 0.02 ng/p. Percent
spike recovery in our samples averaged 100.2 (4.6). Min-
imum detection limits for our fish fssue samples were
<(.02 pg/e total Hg.

Information on watershed characteristics and waler
quality attributes were available for 10 of the 18 lakes we
sampled {Stukel 2003). We used these daia 1o explore
relationships between walleye Hg concentrations and
eavironmental factors, Variables were tested lor homoge-
neity of vartance and normality. Pearson correlations were
used 1o identify significant relationships between individ-
ual parameters and walleye Hg levels {x = 0.05)

Hesults and Discussion

Mean Hg concentrations in walleyes varied considerably
among lakes, ranging from 0.05 (Pelican lake) to 0.99 pg/g
(Bitter and Twin lakes; Table 1). Changes in lake surface
area, as determined by difference {(i.e., wet year—dry year),
ranged from ~54 ha (Lake Madison) to 43,683 ha (Waubay
Lake). On a percentage basis, Lake Madison had the largest
decrease in surface area (4.8%), while Lynn Lake
gxpanded in size by over 300% {(Table 1). Percent data
were log transformed to correct for normality because we
had a right-skewed distribution. The increase in iake SA
associated with wet periods of the mid-1990s was signifi-
cantly related to walieye Hg concentrations {n = 18, model
Fiqm = 26.0, r* = 0.62, p < 0.0001; Fig. 2). Analysis of
watershed and water quality variables from the ten lakes
data set showed that most variables were poorly correlated
w0 walleye Hg concentration, except SA change (Table 2}

Rapid increases in lake levels during the 1990s may be
analogous to the “ressrvoir effect”™ and explain variation in
Hg concentrations among the lakes we studied. Methyla-
tion of Hg in newly flocded soils may remain high for 10~
15 years post-inundation (Porvari 1998; Bowles et al
20813, so it is possible that walleye Hg concentrations will
remain high for several more years. It appears that atmo-
spheric Hg deposition in eastern South DPakota (Gossman
2003; EPA 2005 is not a wivial contribution and can
accumnulate in adiacent terrestrial soils and contribute to Hg
contamination in aguatic food webs when fooding occurs.
In our study, the magnitude of lake surface area expansions
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Table 1 Surface area of lakes in 1987 (dry period) and 2000 fwet perlod). 2nd mean Mg levels in adult walleyes collected from 19962003

Walleve Hg (ng/g}

Sumple collection

Lake Surface area Surface area Percent change in

1987 (ha) 2000 {ha) surface area year
Biner 13099 44054 2363 .99 2005
Blue Dog 669.9 761.8 137 0.21 2000
Brandt 26.6 3067 188 (.18 1998
Byron 7518 7468 .8 0.19 2005
Clear 4687 4847 34 0.14 1999
Enemy Swim 884.0 884G 0.0 .18 2005
Herman 5213 3022 -3.7 010 1996
Kampeska 1590.4 2046.8 18 (.30 2003
Lyan 157.2 643.4 3094 (.57 20035
Madison 13109.3 1055.8 4.8 0.21 1999
Pelican 11248 1124.8 5.0 $.05 2005
Pickerel 407.6 4376 0.0 &4.17 20600
Poinsett 31609 3160.9 0.0 813 1997
Roy 6314 845.3 338 0.1t 2005
Sinai 25842 7519 164.6 0.43 1996
Thempson 4989.9 53934 8.1 (.42 1996
Twin 3648 10259 1812 (.99 2003
Waubay 36482 T331.2 1009 (.40 2001

The surface area of each lake was determined using Landsat 5 images collected in 1987 and 2000
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Fig. 2 Relationship between mean walleye Hg concentrations (ug/g)
for castern South Dakota glacial lakes and percent change in surface
area {SA4) between wet {2000) and dry (i1987) years [n = 13,
Fepa7=26.0, p < 0.0001, o= 062 y = 0.5296 + 3.372(log percent
change in surface area}}

was positively related to Hg concentrations in walleye
{Table 1), However, it not known how the duration and/or
frequency of wet-dry cycles affect Hg levels in specific
water-bodies, because limnological conditions and water
cycles vary between lakes,

Increased Hg concentrations measured in fishes [ol-
lowing water level fluctuations could be associated with the
frequency of imundation {Sorensen et al. 2003, Increased
sulfate levels, caused by the drving and rewetting of soils,
enhance scifate reducing bacteria that produce MeHg.

f_ Springer

Lakes that endure recurrent annual wet-dry cycles likely
experience lower sulfate mobilization than a lake that has
not been inundated for many yvears {Gilmouwr et al, 2004,
Sorensen et al. 200%), Thus, extended wei~dry periods in
gasiern South Dakota may have resulted in elevated sulfate
concenirations that enhance Hg production and availability
in these systems {St. Louis et al. 2004).

Productivity of gilacial lakes may contribute to Hg
concentrations in fish. For example, high walleye growth
rates (based on age-3 TL) are typical in many iakes with
glevated Hg concentrations {South Dakota Game, Fish and
Parks 2006). Fast growing fish populations should resuli in
fish with lower Hg concentrations ewing to growth diluticn
(Norstrom et al. 1%76; Olsson 1978; Verta 1990) and high
algal productivity {Pickhardt et al. 2003; Essington and
Houser 20433, however, based on growth data for age-3
walleyes reported in Stukel (2003), we found that walleve
growth was positively correlated with mean Hg concen-
tration {n = 10, r={0.4695, p=0.026). The surface srea
changes that appear to enhance Hg methylation also
ncrease the productivity of these systems. As a result, the
buffering effect of high fish growth rates and primary
productivity (decreased Hg burden per algal ceil} may not
be realized in natural lzkes that increase in surface area
because of the link between productivity and Hg accumu-
lation.

Although variables such as pH, alkalinity, surface area,
and watershed area explained fish Hg concentrations in
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Table 2 Resulis from Pearson correlation analysis comparing mean
walleye Hg concentrations with covironmemal variables from ten
glacial fakes in eastern South Dakota

Parameter r B
Wsh -0.430 0,192
Yoliarea raito 3397 0.257
Chi-a (mg/l) G.391 0.263
] ~(LOG6 0.987
Alkalinity {mg/L) 0.450 0,192
Conductivity {mS/em} 0.252 (3.483
% SA {3.759% 0.011*

pH, alkalinity, conductivity, and percent change in surface area
between wet {2000) and dry (1987) years (% SA). Environmental data
are from Stukel {2003

Wsl, watershed area to lake sueface area ratio, Volarea ratic lake
volume to surface arga ratio, Chl-a chlorophyil-a concentration

*Sigaificant correlations (p < {.03)

-
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other studies (McMurtry et al, 1989; Bodaly et al. 1993;
Rudd 19953), they did not correlate with walleye Hg levels
in our study (Table 2). This may be due to the high
methylation rates resulting from organic matier decompo-
sition that followed water leve!l increases in the 1990s.
Further, low pH (<7.0} increases microbial methylaton of
mercury {Wren and MacCrimmon 1983; Grieb et al. 1990;
Hakansen 2003), but water pH was relatively high in our
study lakes (mean = 8.9 = 0.04 SE), and may explain why
pH did not influence Hg contamination,

Our study lakes were iocated in close proximity to each
other in eastern Scuth Dakota (Fig. 1). Although the region
experienced relatively uniform precipitation during the
exiended wet period of the mid-1990s, some lakss
expanded faster and several years earlier than others. Lakes
from early water-level expansions may be receding in
MeHg production, and reduced MeHg production within a
take should result in lower total Hg concentrations in the
resident fish communities. Moreover, many lakes experi-
enced little to no change in surface area between wet and
dry vears (Table 1), Several of these lakes (i.e., Kampeska,
Pelican, and Poinsett) have water control structures that
maintain stable water levels in the lake, and generally
contain fish with low Hg concentrations.

Recent fish consumption advisories in South Dakota
{South Dskota Game, Fish and Parks 2006 indicate that
Hg contaminaion is & concern. Walleye are a popular spont
fish in the Prairie Pothole Region and their position as a
primary piscivore makes them suitable for Hg moniloring
(Wren and MacCrimmon 1986). More imporantly, our
results suggest that Hg contamination of walleves and other
spott fishes in Prairie Pothole lakes should be monitored
regularly, particularly after lake levels increase. Lake

surface area change may prove io be a reliable predicior of
Hg concentrations, which would be useful for identifying
lakes with a potential risk of Hg contemination.
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