330 handout @ 1986 Annual Fisheries Research/Mgt. Workshop growth rate insects, copepods Table 4. Species characteristics of *Mysis relicta* compared with those of potential competitors and predators of *M. relicta* in established populations. | 1 OLil Matinez | SPECIES | | | |---|---|--|---| | by tarrick mar inte | HABITAT ^a | TROPHIC ^b | SIZE ^C | | Oppossum shrimp
Mysis relicta | <pre>semi-planktonic, benthic; diel verti- cal migration; very coldwater</pre> | omnivorous: zoo-, phyto- plankters, detritus; prey hea- vily on <i>Daphnia spp</i> . | average 14 - 22 mm
at maturity; 30 mm
maximum | | Amphipod
Pallasea quadrispinosa | <pre>benthic; part of population off-bot- tom at night; very coldwater</pre> | detritivorous | average 10 - 20 mm
at maturity; 30 mm
maximum | | Amphipod
Pontoporeia affinis | benthic, burrowing;
limited diel verti-
cal migration by
adults; coldwater | detritivorous; in-
discriminate feeding
on orgainc matter in
sediments | average 5 - 8 mm at
maturity; 10 mm
maximum | | Alewife
Alosa pseudoharengus | <pre>pelagic, schooling; shallow to moderate depths; coolwater in lakes</pre> | planktivorous; zoo-
plankters, crusta-
ceans, insects;
fish larvae | average 120 - 180 mm
at maturity; 280 mm
maximum; rapid
growth rate | | Lake cisco
Coregonus artedii | pelagic, schooling;
shallow to moderate
depths; cool to
coldwater in lakes | planktivorous; zoo-
plankters, crusta-
ceans, chironomids | average 200 - 300 m
at maturity; 380 mm
maximum; moderate
growth rate | | Bloater
Coregonus hoyi | profundal, pelagic;
moderate to great
depths; coldwater in
Great Lakes basin | predaceous; benthos,
crustaceans, zoo-
plankters | average 170 - 250 m
at maturity; 300 mm
maximum; slow to mo
derate growth rate | | Arctic char
Salvelinus alpinus | <pre>pelagic, profundal;
moderate depths;
very coldwater pri-
marily in lakes</pre> | planktivorous; zoo-
plankters, benthos,
insects; may be pis-
vorous as adults | average 380 - 450 m
at maturity; 640 mm
maximum; slow to
moderate growth rat | | Lake trout Salvelinus namaycush | <pre>profundal; moderate to great depths; very coldwater pri- marily in lakes</pre> | predaceous; fish,
crustaceans; pisci-
vorous as adults | average 400 - 560 m
at maturity; 1200 m
maximum; slow growt
rate | | Rainbow smelt Osmerus mordax | <pre>pelagic, schooling;
moderate depths;
cool- to coldwater
in lakes</pre> | predaceous, plankti-
vorous; crustaceans,
zooplankters; pot-
tential piscivore | average 130 - 200 m
at maturity; 300 mm
maximum; rapid
growth rate | | Burbot
<i>Lota lota</i> | <pre>profundal; moderate to great depths; cool- to coldwater in lakes and rivers</pre> | predaceous night-
feeder; benthos, in-
sects, crustaceans,
molluscs, fish | average 280 - 480 m
at maturity; 890 mm
maximum; rapid ini-
tial growth rate | | Slimy sculpin Cottus cognatus | demersal; shallow to
moderate depths;
cool- to coldwater
in lakes and streams | <pre>predaceous; benthos,
insects, crusta-
ceans; occassionally
small fish</pre> | average 70 - 90 mm
at maturity; 150 mm
maximum; moderate
growth rate | | Deepwater sculpin Myoxocephalus thompsoni | demersal; great
depths; very cold-
water in lakes only | predaceous; benthos, crustaceans (Mysis and Pontoporeia), | average 60 - 80 mm
at maturity; 130 mm
maximum; moderate | a Habitat - distribution of the species within the available environment b Trophic - feeding habits and food sources likely to be utilized C Size - average total length at maturity and approximate maximum size Table 5. Reproductive characteristics of *Mysis relicta* compared with those of potential competitors and predators of *M. relicta* in established populations. | | mtwing | REPRODUCTION LOCATION | FECUNDITY ^C | |---|-------------------------------------|-----------------------|------------------------| | | TIMING ^a | eggs laid in female | mature Age I - IV, | | Oppossum shrimp | mates in fall;
young released in | brood pouch; young | depending on lake | | Mysis relicta | spring | 3 - 4 mm in length | productivity; 10 - | | rysis lelicta | Spi ing | when released | 35 eggs per female | | | | when released | oo eggs per remute | | | probably mates in | eggs laid in female | probably mature Age | | amphipod | winter; young pro- | brood pouch | I - III; birth rate | | Pallasea quadrispinosa | bably released in | brood poden | higher than that of | | allasea quadi ispinosa | spring and summer | | Mysis | | | spring and summer | | 11,515 | | | mates in winter and | eggs laid in female | mature Age I - II; | | mphipod | spring; young re- | brood pouch; young | 15 - 40 eggs per | | Pontoporeia affinis | leased late spring | 0.3 mm in length | female | | director di | to early summer | when released | | | | to carry banner | Wildir Tolloubou | | | ī | spawn May to July | spawn in shallow | mature Age II - III | | lewife | at 15.5 C; eggs | water over sand to | 10000 - 22000 eggs | | llosa pseudoharengus | hatch in about 6 | gravel substrate in | per female; demersa | | 1 | days | lakes and streams | eggs | | | | | | | | spawn in fall, Oc- | spawn in shallow | mature Age II - III | | Lake cisco | tober to December | water over a va- | 6000 - 20000 eggs | | Coregonus artedii | at 4.5 C: eggs | riety of substrates | per female; demersa | | | hatch in April | in lakes | eggs | | | spawn in March at | spawn in deepwater | mature Age II - II] | | Bloater | 1.5 C; eggs hatch | over a variety of | 4000 - 16000 eggs | | Coregonus hoyi | in June | substrate in lakes | per female; demersa | | oregonus noyi | In June | substrate in lakes | eggs | | | | | -685 | | a C | spawn November to | spawn over rocky | mature Age IV - VI; | | rctic char | December at 4 C; | shoals in lakes or | 1900 - 3500 eggs | | Salvelinus alpinus | eggs hatch in April | in quiet pools in | per kg of female; | | | | rivers | demersal eggs | | | | | | | | spawn in October at | spawn in shallow | mature Age V - VII; | | ake trout | ll C at night; eggs | water over boulder | 900 - 2600 eggs per | | Salvelinus namaycush | hatch in March | to rubble substrate | kg of female; demer | | | | in lakes | sal eggs | | | spawn March to May | spawn in shallow | mature Age II - III | | Rainbow smelt | at 10 C at night; | water over gravel | 8000 - 30000 eggs | | Osmerus mordax | eggs hatch in 2 - 3 | substrate in | per female; eggs | | Swelus woldax | weeks | streams and lakes | adhere to substrate | | | Weekle | s and railed | | | | spawn midwinter un- | spawn in shallow | mature Age III - IV | | urbot | der ice at night, | water in lakes and | 50000 - 1.5 million | | Lota lota | January to March at | rivers over sand to | eggs per female; | | | 1 C; eggs hatch May | gravel substrate | semipelagic eggs | | | amarını Mari Ari Tirri | annum in shall | motione Art II III | | 14 | spawn May to June | spawn in shallow | mature Age II - III | | limy sculpin | at 5 - 10 C; eggs | water under rocks | 200 - 1400 eggs per | | Cottus cognatus | hatch June to July | in streams or lakes; | female; adhesive | | | | male gaurds eggs | eggs form clump | | | spawn November to | spawn in deepwater | mature Age II - III | | eepwater sculpin | May at 1 C; eggs | in lakes only; male | 200 - 1200 eggs per | | yoxocephalus thompsoni | hatch February to | guards eggs | female; adhesive | | January Carlonger Carl | Tuly | | eggs for clump | a Timing - approximate spawning time and temperature and approximate time of hatching eggs for clump July b Location - habitat types suitable for reproduction C Fecundity - age at maturity and approximate egg number per female Table 6. Introduction information for *Mysis relicta* compared with that of potential competitors and predators of *M. relicta* in established populations. | | INTRODUCTION | | | |--|--|---|---| | | HISTORYa | ACQUISITION | VAGILITYC | | Oppossum shrimp
Mysis relicta | introduced and es-
tablished in lakes
in Canada, United
States, and Europe | <pre>simple; daytime off- bottom or nighttime pelagic trawling; transport easily</pre> | moderate; have pas-
sively spread via
canals, rivers, and
pumps in Colorado | | Amphipod
Pallasea quadrispinosa | introduced and es-
tablished in many
lakes in Sweden | obtain from Europe;
daytime off-bottom
trawling; transport
easily | probably low; close
association with
substrate should
limit spread | | Amphipod
Pontoporeia affinis | no known attempts;
have been reared and
will reproduce under
lab conditions | simple; daytime off-
bottom trawling;
transport easily | probably low; close
association with
substrate should li-
mit spread | | Alewife
Alosa pseudoharengus | widely introduced
and established in
northeastern United
States as forage | probably simple;
eggs or fry; adults
transport poorly | very high; will readily travel through lakes and rivers invaded Great Lakes | | Lake cisco
Coregonus artedii | introduced and es-
tablished in Canada;
proposed in Ft. Peck
Reservoir, Montana | probably simple;
eggs or adults | probably low; may
move to downstream
lakes | | Bloater
Coregonus hoyi | no known attempts;
eggs hatched and
young reared in lab | probably difficult;
endemic to Great
Lakes; eggs probably
only alternative | probably low; pre-
ference for deep,
coldwater would pro-
bably limit movement | | Arctic char Salvelinus alpinus | introduced and es-
tablished in many
Scandinavian lakes | simple; eyed eggs | probably moderate;
will inhabit rivers
and may move to
other lakes | | Lake trout
Salvelinus namaycush | introduced and es-
tablished in many
in the United States | simple; eyed eggs
or fingerlings | low; enters rivers
to feed; preference
for deep, coldwater
limits movement | | Rainbow smelt Osmerus mordax | widely introduced
and established in
United States pri-
marily as forage | probably simple;
adults or possibly
eggs | very high; will readily travel through lakes and rivers | | Burbot Lota lota | no known attempts | probably simple;
adults or possibly
eggs | probably moderate;
will inhabit rivers
and may move to
other lakes | | Slimy sculpin Cottus cognatus | no known attempts | probably difficult;
adults probably only
option due to pa-
rental care of eggs | probably moderate;
will inhabit streams
and may move to
other lakes | | Deepwater sculpin
Myoxocephalus thompsoni | no known attempts | probably difficult;
adults probably only
option due to pa-
rental care of eggs | probably low; pre-
ference for deep
coldwater would pro-
bably limit movement | a History - previous experience with introduction attempts b Aquisition - relative availability and/or method or source of introduction ^C Vagility - relative capability for dispersion or colinization (self-introduction) Table 7. Population considerations for *Mysis relicta* compared with those of potential competitors and predators of *M. relicta* in established populations. | | POPULATION | | | |--|---|---|--| | | POTENTIAL ^a | STABILITYD | CONTROLLABILITYC | | Oppossum shrimp
<i>Mysis relicta</i> | high; little utili-
zation by fish in
many established
populations | populations may dis-
play considerable
fluctations; no
documented die-offs | currently low; few
to no sympatric fish
species among estab-
lished populations | | Amphipod
<i>Pallasea quadrispinosa</i> | probably moderate;
low abundance in
benthic studies | probably stable; in-
troduced populations
develop relatively
slowly | probably good; very susceptible to fish predation | | Amphipod
<i>Pontoporeia affinis</i> | very high; often the most abundant organism in many benthic studies | probably stable; no
documented popula-
tion fluctuations
or die-offs | probably low; able
to burrow; tolerates
low D.O. which would
preclude fish | | Alewife
Alosa pseudoharengus | very high; frequent-
ly dominate ecosys-
tems when establish-
ed becoming nuisance | poor stability;
annual spring and
summer die-offs do-
cumented | probably low; fish
predation probably
only means of con-
trol | | Lake cisco
<i>Coregonus artedii</i> | possibly high; his-
torically attained
great numbers in its
native range | probably stable; no
documented die-offs | probably low; most
control through fish
predation and pos-
sibly angling | | Bloater
Coregonus hoyi | probably moderate | probably stable; no
documented die-offs | probably low; fish
predation probably
only means of con-
trol | | Arctic char
Salvelinus alpinus | moderate; possible
slower growth rates
and older age at ma-
turity | stable; populations would probably require supplemental stocking | good; angling and
stocking would con-
trol most popula-
tions | | Lake trout
Salvelinus namaycush | low; slow growth and
older ages at matu-
rity limit abundance | stable; many popula-
tions subject to
supplemental stock-
ing | good; control by angling, stocking, and reservoir drawdown after spawning | | Rainbow smelt
<i>Osmerus mordax</i> | very high; many in-
troduced populations
have attained great
numbers | moderate stability;
documented die-offs | probably moderate;
most control through
fish predation and
some through angling | | Burbot
<i>Lota lota</i> | probably moderate;
reportedly attained
large numbers in
some lakes | probably stable; no documented die-offs | probably low; con-
trol by angling and
possibly netting
during spawning | | Slimy sculpin
Cottus cognatus | possibly high | probably stable; no documented die-offs | probably low; fish
predation probably
only means of con-
trol | | Deepwater sculpin
Myoxocephalus thompsoni | possibly high | probably stable; no
documented die-offs;
extirpated in Lake
Ontario | probably low; fish
predation probably
only means of con-
trol | a Potential - relative abundance the species may achieve in new environment b Stability - relative variation in population numbers over time ^C Controllability - capability to influence population levels upon establishment Table 8. Fishery considerations for *Mysis relicta* compared with those of potential competitors and predators of *M. relicta* in established populations. | | POTENTIAL | | | |--|---|--|--| | Oppossum shrimp Mysis relicta | rishery ^a
none | FORAGE ^b excellent; limited at present due to unavailability to many fish species | none known that are
transmissible to
fish | | Amphipod
Pallasea quadrispinosa | none | excellent; effects
on fish appear more
positive than <i>Mysis</i>
in Swedish lakes | unknown | | Amphipod
Pontoporeia affinis | none | excellent; primarily for benthic feeding fish species | possible intermediate host for <i>Echi</i> norcynchus salmonis and <i>Cyathocephalus</i> | | Alewife
<i>Alosa pseudoharengus</i> | none | excellent; all sizes
of warm— to coldwa—
ter deepwater and
pelagic predators | numerous known para-
sites; transfer of
treated eggs should
eliminate diseases | | Lake cisco
<i>Coregonus artedii</i> | limited; may contri-
bute to ice fishery;
excellent eating
quality | excellent; deepwater
and pelagic preda-
tors; may exceed
vulnerable size | numerous known para-
sites; transfer of
treated eggs should
eliminate diseases | | Bloater
<i>Coregonus hoyi</i> | very limited; pro-
bably unavailable
to anglers during
most of year | excellent; all sizes
of lake trout and
other deepwater pre-
datory fish species | numerous known para-
sites; transfer of
treated eggs should
eliminate diseases | | Arctic char
Salvelinus alpinus | excellent; very po-
pular in Canada and
Europe; probably mo-
derate bag limits | minor | numerous known para-
sites; transfer of
treated eggs should
eliminate diseases | | Lake trout
Salvelinus namaycush | moderate; low bag
limit; size restric-
tions; excellent
trophy potential | minor | numerous known para-
sites; transfer of
treated eggs should
eliminate diseases | | Rainbow smelt
Osmerus mordax | moderate; may con-
tribute to ice fish-
ery; "smelting" dur-
ing spring spawning | excellent; all sizes
of warm- to coldwa-
ter deepwater and
pelagic predators | numerous known para-
sites; careful se-
lection of source
to avoid diseases | | Burbot
<i>Lota lota</i> | <pre>limited; may contri- bute to ice fishery; debatable eating quality</pre> | minor | numerous known para-
sites; careful se-
lection of source
to avoid diseases | | Slimy sculpin
Cottus cognatus | none | excellent; small
size vulnerable to
all sizes of preda-
ceous fish | numerous known para-
sites; careful se-
lection of source
to avoid diseases | | Deepwater sculpin
Myoxocephalus thompsoni | none | excellent; all sizes
of lake trout and
other deepwater pre-
datory fish species | limited information;
careful selection of
source to avoid dis-
eases | a Fishery - relative capacity of species to provide sport harvest b Forage - relative suitability of species as fish forage c Disease - major pathogens and/or parasites that could accompany species introductions