330

handout @ 1986 Annual Fisheries Research/Mgt. Workshop

growth rate

insects, copepods

Table 4. Species characteristics of *Mysis relicta* compared with those of potential competitors and predators of *M. relicta* in established populations.

1 OLil Matinez	SPECIES		
by tarrick mar inte	HABITAT ^a	TROPHIC ^b	SIZE ^C
Oppossum shrimp Mysis relicta	<pre>semi-planktonic, benthic; diel verti- cal migration; very coldwater</pre>	omnivorous: zoo-, phyto- plankters, detritus; prey hea- vily on <i>Daphnia spp</i> .	average 14 - 22 mm at maturity; 30 mm maximum
Amphipod Pallasea quadrispinosa	<pre>benthic; part of population off-bot- tom at night; very coldwater</pre>	detritivorous	average 10 - 20 mm at maturity; 30 mm maximum
Amphipod Pontoporeia affinis	benthic, burrowing; limited diel verti- cal migration by adults; coldwater	detritivorous; in- discriminate feeding on orgainc matter in sediments	average 5 - 8 mm at maturity; 10 mm maximum
Alewife Alosa pseudoharengus	<pre>pelagic, schooling; shallow to moderate depths; coolwater in lakes</pre>	planktivorous; zoo- plankters, crusta- ceans, insects; fish larvae	average 120 - 180 mm at maturity; 280 mm maximum; rapid growth rate
Lake cisco Coregonus artedii	pelagic, schooling; shallow to moderate depths; cool to coldwater in lakes	planktivorous; zoo- plankters, crusta- ceans, chironomids	average 200 - 300 m at maturity; 380 mm maximum; moderate growth rate
Bloater Coregonus hoyi	profundal, pelagic; moderate to great depths; coldwater in Great Lakes basin	predaceous; benthos, crustaceans, zoo- plankters	average 170 - 250 m at maturity; 300 mm maximum; slow to mo derate growth rate
Arctic char Salvelinus alpinus	<pre>pelagic, profundal; moderate depths; very coldwater pri- marily in lakes</pre>	planktivorous; zoo- plankters, benthos, insects; may be pis- vorous as adults	average 380 - 450 m at maturity; 640 mm maximum; slow to moderate growth rat
Lake trout Salvelinus namaycush	<pre>profundal; moderate to great depths; very coldwater pri- marily in lakes</pre>	predaceous; fish, crustaceans; pisci- vorous as adults	average 400 - 560 m at maturity; 1200 m maximum; slow growt rate
Rainbow smelt Osmerus mordax	<pre>pelagic, schooling; moderate depths; cool- to coldwater in lakes</pre>	predaceous, plankti- vorous; crustaceans, zooplankters; pot- tential piscivore	average 130 - 200 m at maturity; 300 mm maximum; rapid growth rate
Burbot <i>Lota lota</i>	<pre>profundal; moderate to great depths; cool- to coldwater in lakes and rivers</pre>	predaceous night- feeder; benthos, in- sects, crustaceans, molluscs, fish	average 280 - 480 m at maturity; 890 mm maximum; rapid ini- tial growth rate
Slimy sculpin Cottus cognatus	demersal; shallow to moderate depths; cool- to coldwater in lakes and streams	<pre>predaceous; benthos, insects, crusta- ceans; occassionally small fish</pre>	average 70 - 90 mm at maturity; 150 mm maximum; moderate growth rate
Deepwater sculpin Myoxocephalus thompsoni	demersal; great depths; very cold- water in lakes only	predaceous; benthos, crustaceans (Mysis and Pontoporeia),	average 60 - 80 mm at maturity; 130 mm maximum; moderate

a Habitat - distribution of the species within the available environment

b Trophic - feeding habits and food sources likely to be utilized

C Size - average total length at maturity and approximate maximum size

Table 5. Reproductive characteristics of *Mysis relicta* compared with those of potential competitors and predators of *M. relicta* in established populations.

	mtwing	REPRODUCTION LOCATION	FECUNDITY ^C
	TIMING ^a	eggs laid in female	mature Age I - IV,
Oppossum shrimp	mates in fall; young released in	brood pouch; young	depending on lake
Mysis relicta	spring	3 - 4 mm in length	productivity; 10 -
rysis lelicta	Spi ing	when released	35 eggs per female
		when released	oo eggs per remute
	probably mates in	eggs laid in female	probably mature Age
amphipod	winter; young pro-	brood pouch	I - III; birth rate
Pallasea quadrispinosa	bably released in	brood poden	higher than that of
allasea quadi ispinosa	spring and summer		Mysis
	spring and summer		11,515
	mates in winter and	eggs laid in female	mature Age I - II;
mphipod	spring; young re-	brood pouch; young	15 - 40 eggs per
Pontoporeia affinis	leased late spring	0.3 mm in length	female
director di	to early summer	when released	
	to carry banner	Wildir Tolloubou	
ī	spawn May to July	spawn in shallow	mature Age II - III
lewife	at 15.5 C; eggs	water over sand to	10000 - 22000 eggs
llosa pseudoharengus	hatch in about 6	gravel substrate in	per female; demersa
1	days	lakes and streams	eggs
	spawn in fall, Oc-	spawn in shallow	mature Age II - III
Lake cisco	tober to December	water over a va-	6000 - 20000 eggs
Coregonus artedii	at 4.5 C: eggs	riety of substrates	per female; demersa
	hatch in April	in lakes	eggs
	spawn in March at	spawn in deepwater	mature Age II - II]
Bloater	1.5 C; eggs hatch	over a variety of	4000 - 16000 eggs
Coregonus hoyi	in June	substrate in lakes	per female; demersa
oregonus noyi	In June	substrate in lakes	eggs
			-685
a C	spawn November to	spawn over rocky	mature Age IV - VI;
rctic char	December at 4 C;	shoals in lakes or	1900 - 3500 eggs
Salvelinus alpinus	eggs hatch in April	in quiet pools in	per kg of female;
		rivers	demersal eggs
	spawn in October at	spawn in shallow	mature Age V - VII;
ake trout	ll C at night; eggs	water over boulder	900 - 2600 eggs per
Salvelinus namaycush	hatch in March	to rubble substrate	kg of female; demer
		in lakes	sal eggs
	spawn March to May	spawn in shallow	mature Age II - III
Rainbow smelt	at 10 C at night;	water over gravel	8000 - 30000 eggs
Osmerus mordax	eggs hatch in 2 - 3	substrate in	per female; eggs
Swelus woldax	weeks	streams and lakes	adhere to substrate
	Weekle	s and railed	
	spawn midwinter un-	spawn in shallow	mature Age III - IV
urbot	der ice at night,	water in lakes and	50000 - 1.5 million
Lota lota	January to March at	rivers over sand to	eggs per female;
	1 C; eggs hatch May	gravel substrate	semipelagic eggs
	amarını Mari Ari Tirri	annum in shall	motione Art II III
14	spawn May to June	spawn in shallow	mature Age II - III
limy sculpin	at 5 - 10 C; eggs	water under rocks	200 - 1400 eggs per
Cottus cognatus	hatch June to July	in streams or lakes;	female; adhesive
		male gaurds eggs	eggs form clump
	spawn November to	spawn in deepwater	mature Age II - III
eepwater sculpin	May at 1 C; eggs	in lakes only; male	200 - 1200 eggs per
yoxocephalus thompsoni	hatch February to	guards eggs	female; adhesive
January Carlonger Carl	Tuly		eggs for clump

a Timing - approximate spawning time and temperature and approximate time of hatching

eggs for clump

July

b Location - habitat types suitable for reproduction

C Fecundity - age at maturity and approximate egg number per female

Table 6. Introduction information for *Mysis relicta* compared with that of potential competitors and predators of *M. relicta* in established populations.

	INTRODUCTION		
	HISTORYa	ACQUISITION	VAGILITYC
Oppossum shrimp Mysis relicta	introduced and es- tablished in lakes in Canada, United States, and Europe	<pre>simple; daytime off- bottom or nighttime pelagic trawling; transport easily</pre>	moderate; have pas- sively spread via canals, rivers, and pumps in Colorado
Amphipod Pallasea quadrispinosa	introduced and es- tablished in many lakes in Sweden	obtain from Europe; daytime off-bottom trawling; transport easily	probably low; close association with substrate should limit spread
Amphipod Pontoporeia affinis	no known attempts; have been reared and will reproduce under lab conditions	simple; daytime off- bottom trawling; transport easily	probably low; close association with substrate should li- mit spread
Alewife Alosa pseudoharengus	widely introduced and established in northeastern United States as forage	probably simple; eggs or fry; adults transport poorly	very high; will readily travel through lakes and rivers invaded Great Lakes
Lake cisco Coregonus artedii	introduced and es- tablished in Canada; proposed in Ft. Peck Reservoir, Montana	probably simple; eggs or adults	probably low; may move to downstream lakes
Bloater Coregonus hoyi	no known attempts; eggs hatched and young reared in lab	probably difficult; endemic to Great Lakes; eggs probably only alternative	probably low; pre- ference for deep, coldwater would pro- bably limit movement
Arctic char Salvelinus alpinus	introduced and es- tablished in many Scandinavian lakes	simple; eyed eggs	probably moderate; will inhabit rivers and may move to other lakes
Lake trout Salvelinus namaycush	introduced and es- tablished in many in the United States	simple; eyed eggs or fingerlings	low; enters rivers to feed; preference for deep, coldwater limits movement
Rainbow smelt Osmerus mordax	widely introduced and established in United States pri- marily as forage	probably simple; adults or possibly eggs	very high; will readily travel through lakes and rivers
Burbot Lota lota	no known attempts	probably simple; adults or possibly eggs	probably moderate; will inhabit rivers and may move to other lakes
Slimy sculpin Cottus cognatus	no known attempts	probably difficult; adults probably only option due to pa- rental care of eggs	probably moderate; will inhabit streams and may move to other lakes
Deepwater sculpin Myoxocephalus thompsoni	no known attempts	probably difficult; adults probably only option due to pa- rental care of eggs	probably low; pre- ference for deep coldwater would pro- bably limit movement

a History - previous experience with introduction attempts

b Aquisition - relative availability and/or method or source of introduction

^C Vagility - relative capability for dispersion or colinization (self-introduction)

Table 7. Population considerations for *Mysis relicta* compared with those of potential competitors and predators of *M. relicta* in established populations.

	POPULATION		
	POTENTIAL ^a	STABILITYD	CONTROLLABILITYC
Oppossum shrimp <i>Mysis relicta</i>	high; little utili- zation by fish in many established populations	populations may dis- play considerable fluctations; no documented die-offs	currently low; few to no sympatric fish species among estab- lished populations
Amphipod <i>Pallasea quadrispinosa</i>	probably moderate; low abundance in benthic studies	probably stable; in- troduced populations develop relatively slowly	probably good; very susceptible to fish predation
Amphipod <i>Pontoporeia affinis</i>	very high; often the most abundant organism in many benthic studies	probably stable; no documented popula- tion fluctuations or die-offs	probably low; able to burrow; tolerates low D.O. which would preclude fish
Alewife Alosa pseudoharengus	very high; frequent- ly dominate ecosys- tems when establish- ed becoming nuisance	poor stability; annual spring and summer die-offs do- cumented	probably low; fish predation probably only means of con- trol
Lake cisco <i>Coregonus artedii</i>	possibly high; his- torically attained great numbers in its native range	probably stable; no documented die-offs	probably low; most control through fish predation and pos- sibly angling
Bloater Coregonus hoyi	probably moderate	probably stable; no documented die-offs	probably low; fish predation probably only means of con- trol
Arctic char Salvelinus alpinus	moderate; possible slower growth rates and older age at ma- turity	stable; populations would probably require supplemental stocking	good; angling and stocking would con- trol most popula- tions
Lake trout Salvelinus namaycush	low; slow growth and older ages at matu- rity limit abundance	stable; many popula- tions subject to supplemental stock- ing	good; control by angling, stocking, and reservoir drawdown after spawning
Rainbow smelt <i>Osmerus mordax</i>	very high; many in- troduced populations have attained great numbers	moderate stability; documented die-offs	probably moderate; most control through fish predation and some through angling
Burbot <i>Lota lota</i>	probably moderate; reportedly attained large numbers in some lakes	probably stable; no documented die-offs	probably low; con- trol by angling and possibly netting during spawning
Slimy sculpin Cottus cognatus	possibly high	probably stable; no documented die-offs	probably low; fish predation probably only means of con- trol
Deepwater sculpin Myoxocephalus thompsoni	possibly high	probably stable; no documented die-offs; extirpated in Lake Ontario	probably low; fish predation probably only means of con- trol

a Potential - relative abundance the species may achieve in new environment b Stability - relative variation in population numbers over time

^C Controllability - capability to influence population levels upon establishment

Table 8. Fishery considerations for *Mysis relicta* compared with those of potential competitors and predators of *M. relicta* in established populations.

	POTENTIAL		
Oppossum shrimp Mysis relicta	rishery ^a none	FORAGE ^b excellent; limited at present due to unavailability to many fish species	none known that are transmissible to fish
Amphipod Pallasea quadrispinosa	none	excellent; effects on fish appear more positive than <i>Mysis</i> in Swedish lakes	unknown
Amphipod Pontoporeia affinis	none	excellent; primarily for benthic feeding fish species	possible intermediate host for <i>Echi</i> norcynchus salmonis and <i>Cyathocephalus</i>
Alewife <i>Alosa pseudoharengus</i>	none	excellent; all sizes of warm— to coldwa— ter deepwater and pelagic predators	numerous known para- sites; transfer of treated eggs should eliminate diseases
Lake cisco <i>Coregonus artedii</i>	limited; may contri- bute to ice fishery; excellent eating quality	excellent; deepwater and pelagic preda- tors; may exceed vulnerable size	numerous known para- sites; transfer of treated eggs should eliminate diseases
Bloater <i>Coregonus hoyi</i>	very limited; pro- bably unavailable to anglers during most of year	excellent; all sizes of lake trout and other deepwater pre- datory fish species	numerous known para- sites; transfer of treated eggs should eliminate diseases
Arctic char Salvelinus alpinus	excellent; very po- pular in Canada and Europe; probably mo- derate bag limits	minor	numerous known para- sites; transfer of treated eggs should eliminate diseases
Lake trout Salvelinus namaycush	moderate; low bag limit; size restric- tions; excellent trophy potential	minor	numerous known para- sites; transfer of treated eggs should eliminate diseases
Rainbow smelt Osmerus mordax	moderate; may con- tribute to ice fish- ery; "smelting" dur- ing spring spawning	excellent; all sizes of warm- to coldwa- ter deepwater and pelagic predators	numerous known para- sites; careful se- lection of source to avoid diseases
Burbot <i>Lota lota</i>	<pre>limited; may contri- bute to ice fishery; debatable eating quality</pre>	minor	numerous known para- sites; careful se- lection of source to avoid diseases
Slimy sculpin Cottus cognatus	none	excellent; small size vulnerable to all sizes of preda- ceous fish	numerous known para- sites; careful se- lection of source to avoid diseases
Deepwater sculpin Myoxocephalus thompsoni	none	excellent; all sizes of lake trout and other deepwater pre- datory fish species	limited information; careful selection of source to avoid dis- eases

a Fishery - relative capacity of species to provide sport harvest
b Forage - relative suitability of species as fish forage
c Disease - major pathogens and/or parasites that could accompany species introductions