2009 Annual Report

Pallid Sturgeon Population Assessment and Associated Fish Community Monitoring for the Missouri River: Segment 3

Prepared for the U.S. Army Corps of Engineers – Missouri River Recovery Program

By:

Tyler Haddix, Landon Holte and John Hunziker

Montana Fish, Wildlife & Parks PO Box 165 Fort Peck, MT 59223

May 2010

EXECUTIVE SUMMARY

Montana Fish, Wildlife & Parks sampled 22 random river bends with standard gears in segment 3 of the Missouri River during both the sturgeon and fish community seasons in 2009. In addition, trotlines were deployed in 21 random bends over the entire sampling period. The sampling season began on the 27th of April and ended on the 26th of October. In all, 493 otter trawl samples were deployed averaging 268 m in distance for a total of 131.9 km trawled. Trammel nets were drifted 478 times averaging 229 m per drift for a total of 108.6 km. An additional 176 mini fyke nets were set during the fish community season and 292 trotlines were set over the entire sampling period.

More pallid sturgeon *Scaphirhynchus albus* (n = 190) were captured during 2009 than any previous year of sampling. The total number of pallid sturgeon captured in segment 3 has increased in each year since the inception of the program in Montana. However, the increase in total pallid sturgeon captures has mostly been an artifact of additional effort from standardized, wild and experimental gears and has not been attributed to an increase in CPUE of standard gears. Overall CPUE of pallid sturgeon using trammel nets was slightly lower in 2009 than during 2008, while otter trawl CPUE slightly increased from 2008.

Trotlines proved to be a very effective gear in sampling pallid sturgeon in 2009 with 72 sampled. Of the 72 pallid sturgeon sample, 43 were captured during a three day intensive trotline effort in the lower portions of segment 3. During the three days of sampling nine different year classes of pallid sturgeon were represented from nine separate stocking locations from both the Missouri and Yellowstone Rivers. This lower section of segment 3 is potentially one of the most important rearing areas for hatchery reared juvenile pallid sturgeon in RPMA 2, and further research on why pallid sturgeon abundance is relatively high when compared to upstream areas may be warranted.

In 2009, the first wild pallid sturgeon was captured using standard gears in the four years of sampling. This adult pallid sturgeon measured 1,370 mm FL and was captured at rivermile 1625.5 on August 10th in a trammel net.

Over the past four years of sampling the size structure of pallid sturgeon sampled in segment 3 has changed. A higher proportion of larger fish are being sampled during both the fish community and sturgeon seasons when compared to the first year of sampling. A total of 11

ii

year classes of pallid sturgeon were sampled in segment 3 during 2009. The 2005 through 2008 year classes dominated with 88% of the total catch. Additionally, pallid sturgeon from 11 different stocking locations within the Missouri and Yellowstone Rivers were sampled. On average the growth rates of recaptured pallid sturgeon are higher in segment 3 than its upstream counterpart, segment 2.

During 2009 a total of 375 shovelnose sturgeon were sampled in segment 3 of the Missouri River, very similar to the 378 sampled in 2008. Shovelnose sturgeon catch rates in 2009 as well as previous years are significantly lower in segment 3 when compared to upstream in segment 2. Trammel net CPUE for quality and above sized shovelnose sturgeon in segment 3 was one-sixth that of segment 2. Overall otter trawl CPUE of stock size and larger shovelnose sturgeon in segment 3 was similar in 2009 to the three previous years. However, all shovelnose sturgeon sampled over the past four years in both segments 2 and 3 that were smaller than 300 mm FL were sampled in segment 3. Nevertheless, during 2009 we did not capture any shovelnose sturgeon smaller than 268 mm FL in 2009, which again was the first year that these smaller size classes were absent from the catch.

Although the relative abundance of shovelnose sturgeon in higher in segment 2 than 3, on average the relative weights of shovelnose sturgeon are higher in segment 3 when compared to segment 2. With the increase in pallid sturgeon catch in segment 3, the total ratio of shovelnose to pallid sturgeon was 2:1 during 2009 a decrease from the 3:1 ratio observed during 2006, the first year of sampling.

A likely young-of-the-year blue sucker was sampled via the otter trawl on August 24th at rivermile 1591. This fish measured 96 mm TL and was the first evidence of recent recruitment to the blue sucker population that the population assessment team has found in four years of sampling segments 1-3 in Montana.

Overall during 2009 a total of 9,461 fish consisting of 33 species were collected in segment 3 of the Missouri River. Mini fyke nets collected 68% of all fish sampled, followed by otter trawls (15%), trammel nets (10%) and trotlines (7%). Species like sturgeon chubs *Macrhybopsis gelida* and sicklefin chubs *M. meeki* are more abundant in segment 3 when compared to segment 2. In addition, many native fishes follow a similar pattern to pallid sturgeon with an increase in relative abundance as you go downstream in segment 3. The downstream portions of segment 3 are the most naturalized portions of the Missouri River

iii

downstream of Fort Peck within Montana. Continued evaluations of habitat features and fish community structure on both large and finer scales may allow us to better understand the specific factors that are allowing pallid sturgeon and other native fishes to do comparably better in these areas when compared to the more altered habitats upstream.

TABLE OF CONTENTS

Introduction	
Study Area	
Methods	4
Sam	ple site selection and description4
Sam	pling gear6
Data	Collection and Analysis7
Results	
Palli	d sturgeon12
	Shovelnose X Pallid Sturgeon Hybrids
Targ	eted Native River Species
	Shovelnose sturgeon32Sturgeon chub44Sicklefin chub47Speckled chub47Speckled chub50Hybognathus spp53Blue sucker56Sauger61
Missouri Riv	ver Fish Community68
Discussion .	
Acknowledg	gments73
References .	
Appendices	

LIST OF TABLES

Table 1. Number of bends sampled, mean number of deployments, and total number of deployments by macrohabitat for Segment 3 on the Missouri River during the sturgeon season and fish community season in 2009. N-E indicates the habitat is non-existent in the segment.

Pallid sturgeon

 Table 2. Pallid sturgeon capture summaries for all gears relative to habitat type and environmental variables on the Missouri River during 2009. Means (minimum and maximum) are presented.

 16

 Table 8. Total number of pallid sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009.

 2009.
 29

Shovelnose sturgeon

Blue sucker

Sauger

Table 15. Total number of saugers captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009.

LIST OF FIGURES

Pallid sturgeon

Figure 4. Relative condition factor (Kn) for all pallid sturgeon captured with all gear by incremental relative stock density (RSD) length category from 2006-2009 in Segment 3 in the Missouri River. Length categories determined using the methods proposed by Shuman et al. (2006). Relative condition factor was calculated using the equation in Shuman et al. (In review).

Shovelnose sturgeon

Figure 11. Mean annual catch per unit effort (+/- 2 SE) of sub-stock size (0-149 mm; crosshatched bars), sub-stock size (150-249 mm; black bars), stock size (250-379 mm; white bars), and quality and above size (> 380 mm; gray bars) shovelnose sturgeon using 1.0" trammel nets

Figure 12. Mean annual catch per unit effort (+/- 2 SE) of sub-stock size (0-149 mm; crosshatched bars), sub-stock size (150-249 mm; black bars), stock size (250-379 mm; white bars), and quality and above size (> 380 mm; gray bars) shovelnose sturgeon using otter trawls in

Figure 13. Length frequency of shovelnose sturgeon during the sturgeon season (black bars) and fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples

Figure 14. Proportion of catch by size group for all shovelnose sturgeon captured with all gear by length category from 2006 to 2009 in Segment 3 in the Missouri River. Length categories

Figure 15. Relative weight (Wr) for all shovelnose sturgeon captured with all gear by incremental relative stock density (RSD) length category from 2006-2009 in Segment 3 in the Missouri River. Length categories determined using the methods proposed by Quist (1998).

Sturgeon chub

Figure 16. Mean annual catch per unit effort (+/-2 SE) of sturgeon chub using otter trawls in

Figure 17. Length frequency of sturgeon chub during the sturgeon season (black bars) and the fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all

Sicklefin chub

Figure 18. Mean annual catch per unit effort (+/- 2 SE) of sicklefin chub using otter trawls in

Figure 19. Length frequency of sicklefin chub during the sturgeon season (black bars) and the fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard

Speckled chub

Speckled chubs are not present within the study area.

Sand shiner

Hybognathus spp.

Figure 24. Mean annual catch per unit effort (+/- 2 SE) of *Hybognathus* spp. with mini-fyke nets in Segment 3 of the Missouri River during fish community season 2006-2009.54

Blue sucker

Sauger

LIST OF APPENDICES

Appendix A. Phylogenetic list of Missouri River fishes with corresponding letter codes used in the long-term pallid sturgeon and associated fish community sampling program.76

Appendix C. List of standard and wild gears, their corresponding codes in the database, seasons deployed, years used, and catch-per-unit-effort units for collection of Missouri River fishes for the long-term pallid sturgeon and associated fish community sampling program.83

Appendix F2. 1.0" Trammel Net:	91
Appendix F3. Otter Trawl:	94
Appendix F4. Mini-fyke Net:	96
Appendix G. Hatchery names, locations, and abbreviations	98
Anne d'est H. Alalahatia list of Missouri Disco fisher suith total annuhan ann	-1.4 1

Appendix I. Comprehensive list of bend numbers and bend river miles for Segment 3 of the Missouri River comparing bend selection between years from 2006-2009.101

Introduction

The U.S. Fish and Wildlife Service (USFWS) listed pallid sturgeon *Scaphirhynchus albus* as endangered in 1990. In response to listing, the USFWS issued a Biological Opinion to the U.S. Army Corps of Engineers (COE), the primary water management entity responsible for the Missouri River mainstem from Fort Peck Dam and Reservoir to its confluence with the Mississippi River. Additionally, an amendment to the 2000 Biological Opinion was issued in 2003. The Amendment listed several Reasonable and Prudent Alternatives (RPA) to address the inability of pallid sturgeon to naturally reproduce and the need to be able to detect changes in their populations and ecosystem trends.

The Pallid Sturgeon Population Assessment Program (program) is guided by the RPA's in the 2003 Amendment to the 2000 Biological Opinion. The program is a comprehensive monitoring plan designed to assess survival, movement, distribution, habitat use, and physical characteristics of these habitats used by wild and hatchery reared juvenile pallid sturgeon (Welker and Drobish 2009). The 2000 Biological Opinion divides the program area into river and reservoir segments and assigns high, moderate, or low priority management action to these segments for pallid sturgeon (Welker and Drobish 2009). The focus of the program is on the high priority management action segments. The Missouri River from Fort Peck Dam downstream to the headwaters of Lake Sakakawea, ND is listed as a high priority action segment.

The program has stratified the Missouri River from Fort Peck Dam to the headwaters of Lake Sakakawea into four study segments based on biological, hydrological and fluvial geomorphological characteristics. The COE contracted Montana Fish, Wildlife & Parks (FWP) to conduct program sampling from Fort Peck Dam downstream to the North Dakota border, which consists of study segments 1 through 3.

The objectives of this program are as follows:

- 1. Document annual results and long-term trends in pallid sturgeon population abundance and geographic distribution throughout the Missouri River System.
- 2. Document annual results and long-term trends of habitat use of wild pallid sturgeon and

hatchery stocked pallid sturgeon by season and life stage.

- Document population structure and dynamics of pallid sturgeon in the Missouri River System.
- 4. Evaluate annual results and long-term trends in native target species population abundance and geographic distribution throughout the Missouri River system.
- 5. Document annual results and long-term trends of habitat usage of the native target species by season and life stage.
- 6. Document annual results and long-term trends of all non-target species population abundance and geographic distribution throughout the Missouri River system, where sample size is greater than fifty individuals.

Sampling Season and Species

This program has two discrete seasons (sturgeon and fish community), which are primarily segregated by water temperatures. However, the sturgeon season is designed to sample sturgeon with gears that are temperature dependent, such as gill nets. Due to the nature of the majority of habitats in segment 1 through 3, gill nets are not an efficient gear for collecting pallid sturgeon due to debris flows and swift current and therefore they are not used in any segment situated in Montana. Trammel nets and otter trawl are standard gears used in segments 1-4 during sturgeon season, and appear to be an effective method to sample pallid sturgeon.

The fish community season extends from the beginning of July till the end of October and is designed not only to monitor sturgeon, but also monitor other native Missouri River fish populations. Both trammel nets and otter trawls are used during the fish community season, however mini fyke nets are added as a standard gear to more effectively sample shallow water habitats < 1.2 m in depth.

In addition to pallid sturgeon, the program is designed to monitor nine other native Missouri River species labeled "target" species. These include, shovelnose sturgeon *Scaphirhynchus platorynchus*, blue sucker *Cycleptus elongatus*, sauger *Sander canadense*, sturgeon chub *Macrhybopsis gelida*, sicklefin chub *M. meeki*, speckled chub *M. aestivalis*, plains minnow *Hybognathus placitus*, western silvery minnow *H. argyritis*, and sand shiner *Notropis stramineus*. This suite of species was selected for various reasons. First, some species may have similar habitat requirements as pallid sturgeon and therefore by monitoring their populations we

may gain further insight into pallid sturgeon habitat and how anthropomorphic and natural changes to the Missouri River affect native fish assemblages. Secondly, it is hypothesized that various chub species and other native fishes are an important component of pallid sturgeon diet, and thereby monitoring pallid sturgeon prey will allow us to better describe their habitat. Thirdly, we wouldn't expect to see an immediate response in a long-lived species like pallid sturgeon would be difficult to measure when environmental conditions change from either favorable or detrimental conditions. Thus, by monitoring short-lived native fishes we may be able to correlate environmental conditions to changes in fish populations on a much shorter time interval and make inferences on how pallid sturgeon populations may be affected.

Study Area

Montana Fish, Wildlife & Parks samples three segments on the Missouri River below Fort Peck Dam to its confluence with the Yellowstone River in accordance with the Pallid Sturgeon Population Assessment Program. Study segment 3 of the Missouri River Pallid Sturgeon Population Assessment Program encompasses 119 river miles from Wolf Point, MT to the confluence of the Missouri and Yellowstone Rivers in North Dakota. In this large section, the river has completely transitioned from a cold clear cobble substrate river in segment 2 to a warm turbid prairie river, more similar to its natural characteristics (Galat et al, 2005). The aggrading streambed of segment 3 is flanked by stream deposited sediment of the Fort Union Formation (NRIS, 2007). This stretch of river is slightly less flow regulated than upstream segments due to the tributaries and runoff events. There are five major tributaries that influence this section of river, which include the Milk River, Redwater River, Poplar River, Big Muddy Creek, and Prairie Elk Creek. These sediment packed tributaries flush their warmer turbid waters into the Missouri River increasing flows and suspended sediment, which in turn enables sandbar and island formation. Turbidities in this stretch of river are greater than that of segment 2 and discharge constantly changes with precipitation events and tributary discharge. The species composition of this stretch of river is vastly different from the uppermost segment just below Fort Peck Dam. The non-native fish stocked for recreation are much less prevalent and the prevalence of native, non-sport fish is increased (Gardner and Stewart, 1987). This stretch of

ever-changing river is diverse with over 36 species of fish, many of which are benthic specialists, exhibiting streamlined bodies and well-developed chemosensory organs for surviving the sometimes high flows and ever-turbid waters (Galat et al, 2005; Berry et al. 2004). This stretch of river can be highly dynamic and is more reminiscent of what the Missouri River looked like before it became one of the most regulated and impounded rivers in the United States (Galat et al, 2005). However, due to the extremely low spring and summer flows that we've experienced in the past three years due to the operations of Fort Peck Dam, habitat formation is not occurring as it might have during the high runoff years of the 1990's.

Methods

Sampling methods for the Pallid Sturgeon Population Assessment Program were conducted in accordance with the Standard Operating Procedures (Welker and Drobish 2009), which was established by representatives from State and Federal agencies involved with pallid sturgeon recovery on the Missouri River. For a detailed description of methodologies please see Welker and Drobish (2009). A general description of sampling guidelines follows.

Sampling Site Selection and Description

Montana Fish Wildlife & Parks (FWP) was contracted to sample Segment 1 from Fort Peck Dam (RM 1771.5) to the mouth of the Milk River (RM 1761), Segment 2 from the mouth of the Milk River (RM 1761) to Wolf Point (RM 1701.5) and Segment 3 from Wolf Point (RM 1701.5) to the Montana/North Dakota border (RM 1586.5). Segment 3 consisted of 22 randomly selected bends. All 22 bends were sampled during both the sturgeon season (April 1 through June 30) and the Fish Community Season (July 10 through October 28) during 2008.

Two gears, trammel net and otter trawl were considered standard gears for both the sturgeon and fish community seasons. Both trammel nets and the otter trawl were used in all 22 randomly selected bends during both seasons. Additionally, mini fyke nets were also considered

a standard gear for the fish community season and all 22 randomly selected bends were sampled with mini fyke nets.

Trotlines were used in segment 3 during 2009 as an experimental gear with the intent to further evaluate its use as a pallid sturgeon gear. Twenty-one randomly chosen river bends were sampled using trotlines, 10 during the sturgeon season and 11 during the fish community season. Random river bends for trotlines were chosen by moving one river bend upstream from the randomly chosen river bends for standard gears. This was done to minimize the influence of trotlines on our standard gears and make logistics easier. Since trotlines are a gear that requires attending a river bend on two consecutive days, it is logistically better to be able to set trotlines on the same day as otter trawling or drifting trammel nets occurs. We also wanted to make sure that one gear wasn't influencing the catch of other gears and by sampling the next river bend upstream we believe we achieved this. No marked pallid sturgeon captured in standard gears or trotlines were subsequently captured in different gear at an adjacent bend within the same sampling period in 2009.

The Population Assessment Team developed a standard set of habitat classifications for the Missouri River (Appendix B) which consists of three distinct macrohabitats found in every bend, a main channel crossover (CHXO), main channel outside bend (OSB), and main channel inside bend (ISB). Each sampling bend was comprised of these three main macrohabitats. Nine additional macrohabitats were identified that may or may not be present in every bend: large tributary mouths (TRML), small tributary mouths (TRMS), confluence areas (CONF), large and small secondary connected channels (SCCL& SCCS), deranged channels (DRNG), braided channels (BRAD), dendritic channels (DEND) and non-connected secondary channel (SCN).

Mesohabitats were established to further define macrohabitats. Mesohabitats include bars (BARS), pools (POOL), channel border (CHNB), thalweg (TLWG) and island tip (ITIP). Channel borders are situated in areas between the deepest portions of the river up to a depth of 1.2 m. Bars are considered shallow areas (< 1.2 m) where terrestrial and aquatic habitats merge. The thalweg is the deepest portion of the river between the two channel borders where the majority of the flow is directed. Pools are directly downstream of any feature that creates scour, thus creating a habitat of deep (> 1.2 m) slower moving water. Island tips are just downstream of bars or islands where two channels meet where the water is > 1.2 m in depth. For all analysis, the sampling unit was the river bend, where every river bend has a channel crossover, inside and outside bend. The downstream border of a river bend is the beginning of the next downstream bend's channel crossover.

Sampling Gear

For specific information pertaining to the specific habitats gears are utilized in and physical measurements taken in accordance with sampling the various gears described below, please see Welker and Drobish (2009).

Trammel Net

The standard trammel net has a length of 38.1 m, an inner mesh wall 2.4 m and two outer mesh walls 1.8 m deep. The inner mesh is made of #139 multifilament twine with a bar mesh size of 25.4 mm. The outer walls are constructed of #9 multifilament twine with a bar mesh size of 203.2 mm. The float line is a 12.7 mm diameter foam core with a lead line of 22.7 kg. Trammel nets were drifted from the bow of the boat and orientated perpendicular to the river flow for a minimum of 75 m and a maximum drift distance of 300 m.

Otter Trawl

The standard otter trawl has a length of 7.6 m, a width of 4.9 m and height of 0.9 m. The otter trawl has an inner mesh (6.35mm bar, #18 polyethylene twine) and outer mesh (38mmbar, #9 polyethylene twine) and a cod end opening of 406.4 mm. The trawl doors were made from 19.1 mm marine plywood and measured 762 mm x 381 mm. The trawl doors are used to keep the mouth of the trawl open while deployed on the riverbed. The trawl also has a 7.9 m long tickler chain attached to the bottom of the mouth of the trawl, which aids in keeping it orientated on the riverbed and protecting the mouth when snags are encountered. The otter trawl was deployed from the bow of the boat parallel to the current with two 30.5 m ropes and towed downstream slightly faster than current speed for a minimum of 75 m and a maximum distance of 300 m.

Mini Fyke Nets

The standard mini-fyke net consists of two rectangular frames 1.2 m wide and 0.6 m high and two 0.6 m tempered steel hoops. A 4.5 m long and 0.6 m high lead is connected to the first frame. The fyke net was made of 3 mm "ace" style mesh. The lead has small floats attached to the top and lead weights on the bottom. Mini-fyke nets are set with a "T" stake on shore and extend into river as perpendicular to the shoreline as possible or angled slightly downstream where higher velocities existed. Mini-fyke nets were set overnight and checked the following morning.

Trotlines

Trotlines consisted of 32 m nylon rope attached to both upstream and downstream anchors. Octopus style circle hooks were attached to the ropes using 136 kg monofilament line and commercial fishing clips. Twenty 45.7 cm leaders were used on each trotline each with a 3/0 Eagle Claw circle hook. Experimental trotlines were set overnight and checked the next morning.

Data Collection and Analysis

A minimum of eight random subsamples were taken in macrohabitats present at each randomly selected river bend. At least two subsamples (when possible) were taken using each gear in each macro habitat within a bend. More than two subsamples were taken in a macrohabitat for a gear when the number of discrete macrohabitats was less than four or less than four could be effectively sampled. When a pallid sturgeon was captured, we duplicated the sample in a non-random manner. No more than eight duplicates were taken and we would stop taking duplicates whenever two contiguous duplicate subsamples contain no pallid sturgeon. Although this non-random sampling, it gives us a better understanding of relative abundance and identifies habitats that pallid sturgeon may congregate in.

All fish were measured to the nearest mm. Fork length (FL) was used for pallid and shovelnose sturgeon, while other species were measured to TL, except for paddlefish *Polyodon spathula*, which were measured from the eye to the fork in the caudal fin. The first 25 fish of each species in each subsample were measured, after 25 they were counted.

Time was recorded at the beginning of each sample with all gears and an end time was always recorded when pulling mini fyke net sets. A global positioning satellite (GPS) position

was taken at the beginning and end of all otter and beam trawls and trammel net drifts. One GPS location was taken for mini fyke net samples (middle of the seine). All GPS locations were taken using a Garmin GPS 76 unit with Wide Area Augmentation System (WAAS) capability.

Sample depth was determined at the beginning, middle and end of each trawl and drift using a Lowrance X136 sonar unit. One depth was taken for mini fyke nets at the intersection of the frame and floatline using a wading rod.

Water temperature taken near the surface was recorded at every sample using the Lowrance X136 unit for trawls and trammel net drifts and using a hand held thermometer for mini fyke net and bag seine samples.

Habitat samples were collected randomly for 25% of each mesohabitat within each macrohabitat sampled. Velocities (mps) were taken at three depths in the water column for habitats > 1.2 m in depth (bottom, 0.8 of bottom depth and 0.2 of the bottom depth) using either a Current AA Price Meter and sounding reel or a Marsh-McBirney Flo Mate 2000. Velocities for shallow water habitats (< 1.2 m) were taken at the bottom and 0.6 of the bottom depth using the March-McBirney Flo Mate 2000.

Turbidity was recorded in nephelometeric turbidity units (NTU) using a LaMotte 2020 turbidity meter. Turbidity was taken at the midpoint of all samples, except mini fyke sets, where it was taken at the convergence of the rectangular frame and float line.

In addition to 25% of all mesohabitats, habitat measurements were taken whenever a pallid sturgeon was captured.

Genetic Verification

Genetic verification for pallid sturgeon or potential hybrids followed the methods outlined in Welker and Drobish (2009). Two fin pectoral fin clips ($\sim 2 \text{ cm}^2$) are taken from any pallid sturgeon of unknown origin. Fin samples are then preserved in 95% non-denatured alcohol for genetic analysis. All samples are sent to the U.S. Fish and Wildlife Service's Lamar Laboratory for analysis and archiving.

Relative Condition

Relative condition (Kn) for all sampled pallid sturgeon was calculated using the following formula: Kn = W / W', where W is the fork length of the specimen and W' is the

length-specific mean weight predicted by the weight-length relationship equation calculated for that population. Since no weight length-relationship exists for the hatchery reared pallid sturgeon population in segment 2, we used the weight-length relationship $[log_{10} W = -6.378 + 3.357 log_{10} L (r^2 = 0.9740)]$ derived by Keenlyne and Evanson (1993) for pallid sturgeon throughout their range.

Size Classes of Pallid and Shovelnose Sturgeon

We used the length categories proposed by Shuman et al. (2006) for pallid sturgeon and Quist et al. (1998) for shovelnose sturgeon when looking at the total proportion of fish captured by length. Additionally, we broke up sub-stock sizes for both pallid and shovelnose into two groups to aid in determining recruitment of young-of-the-year (YOY) sturgeon. Fork length categories for both species of sturgeon are given in all figures and tables pertaining to size classes.

Analyses

The fundamental sampling unit for the Population Assessment Program is the river bend. Therefore, sample size was equal to the number of bends sampled. Accordingly, all catch-perunit-effort (CPUE) estimates for each species by gear were made on a bend level and the mean bend CPUE's were averaged to obtain the segment CPUE. Catch-per-unit-effort was stratified by season, depending on the analysis. In addition, stratification by macro- and mesohabitats was performed for each species. All CPUE estimates were performed by the Missouri Department of Conservation.

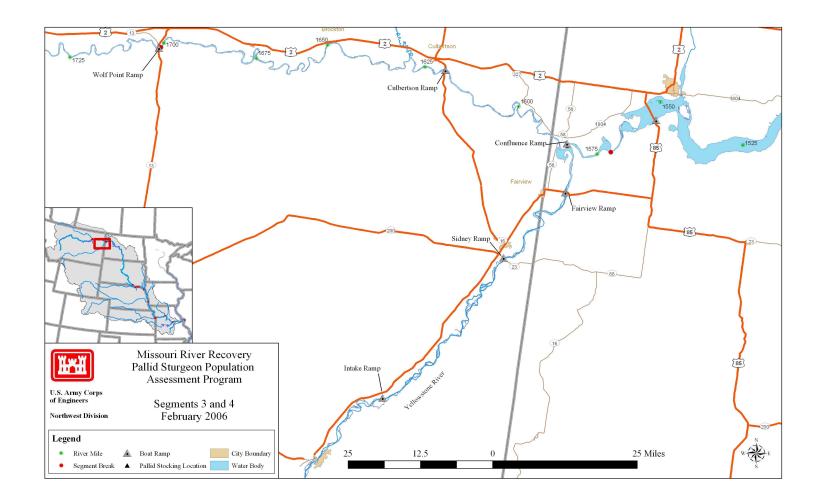


Figure 1. Map of segment 3 of the Missouri River with major tributaries, common landmarks, and historic stocking locations for pallid sturgeon. Segment 3 encompasses the Missouri River from Wolf Point, MT (River Mile 1701.0) to the confluence with the Yellowstone River (River Mile 1582.0).

Results

Effort

A total of 22 randomly selected river bends were sampled using trammel nets and the otter trawl during the sturgeon season of 2009. Each gear had an average of 8 random deployments (Table 1). In addition, 32 non random otter trawl and 14 trammel net deployments were made as duplicate passes subsequent to capturing pallid sturgeon. Trotlines were used in 10 randomly selected bends during the sturgeon season, each with eight subsamples.

During the fish community season the same 22 randomly selected bends were sampled with trammel nets and the otter trawl as well as mini fyke nets. Otter trawl and trammel nets had an additional 58 and 47 non-random duplicate subsamples deployed after catching a pallid sturgeon. Trotlines were set in 11 random river bends during the fish community season.

From August 24th through 26th non-random trotline samples as well as otter trawl and trammel nets deployments were made in non-random river bends to increase our pallid sturgeon catch. The increased numbers will be used to populate survival estimates of pallid sturgeon released into RPMA 2.

Pallid Sturgeon

During 2009 a total of 189 pallid sturgeon were sampled in segment 3 of the Missouri River, which was more than any of the three previous sampling years (Figure 9). All but one pallid sturgeon sampled were of hatchery origin. The one wild pallid sturgeon was an adult measuring 1,370 mm FL captured at rivermile 1625.5 on August 10th in a trammel net. This was the first wild pallid sturgeon sampled using the standardized protocols of the Population Assessment Program during the four years the Program has been implemented in Montana. Over the four year span a total of 460 pallid sturgeon have been sampled in segment 3.

Pallid sturgeon were captured throughout the length of segment 3, however the highest catches occurred in the downstream portions of the segment starting at about rivermile 1620 (Figure 2). Experimental trotlines sample 72 pallid sturgeon, more than any other gear. For the standard gears, the otter trawl sampled 70 pallid sturgeon, while trammel nets caught 47. Mini

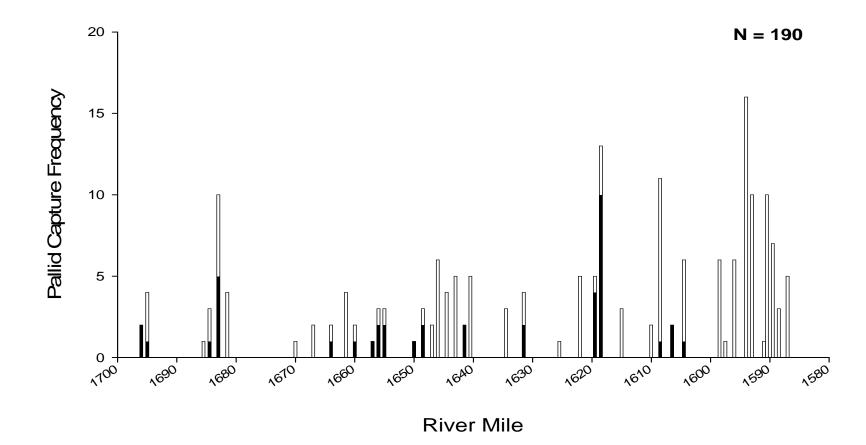
fyke nets did not capture a pallid sturgeon. More pallid sturgeon were sampled in the fish community season (n = 148) than during the sturgeon season (n = 41).

The proportion of pallid sturgeon sampled by length group has subtly changed since 2006. In 2009 a few fish from the quality and larger size groups were seen in the catch. Little change has been observed during the sturgeon season, where the last three years of sampling have consisted of sub-stock and stock sized fish. The subtle change that has occurred has occurred during the fish community season, where a few larger fish of quality size and above have been captured the past two years. Most of these larger sized pallid sturgeon have been sampled using trotlines.

Eleven different year classes of pallid sturgeon were sampled during 2009, an increase from 11 year classes sampled in 2008. The 2007 year class was the most abundant year class sampled with 47 captured, followed by 2008 (n = 45), 2006 (n = 38), 2005 (n = 32), 2004 (n = 5), 2002 (n = 5), 2001 (n = 5), 2009 (n = 3), 1998 (n = 2), 1997 (n = 2) and 2003 (n = 1).

The relative condition of pallid sturgeon within a size class has remained similar between years of sampling. However, a pattern of decreasing relative condition is seen as fish move from smaller to larger size classes (Figure 4). The one wild adult captured had a high relative condition when compared to its hatchery counterparts.

Although the total number of pallid sturgeon sampled has increased over the past four years of sampling, this pattern has not been manifested in the CPUE data for either trammel nets or the otter trawl (Figures 6 and 7). Overall trammel net CPUE of pallid sturgeon was slightly lower in 2009 than in 2008 and 2006 (Figure 6). While the CPUE for the otter trawl was higher in 2009 than during 2008, it was still slightly lower than the 2007 estimate. With the high variance associated with the estimates no conclusions can be made at this time about the relative abundance of pallid sturgeon using this gear. Interestingly, the pattern of overall CPUE for the trammel net and otter trawl have been opposite of one another over the past four years. For instance, overall trammel net CPUE was higher in 2006 then lower in 2007 then back to higher in 2008 and lower in 2009. Otter trawl CPUE showed an opposite pattern being lower in 2006 then higher in 2007 then lower in 2008 and higher in 2009.


Trotlines proved to be a very effective gear at sampling pallid sturgeon in 2009. From August 24th through 26th we implemented an intensive trotlining effort which consisted of setting 16 trotlines at a time as both an overnight and timed sets between rivermiles 1594 to 1587. A

total of 43 pallid sturgeon representing 9 distinct year classes were sampled. These fish originated from nine separate stocking sites within RPMA 2 including sites on both the Missouri and Yellowstone River. This sampling effort captured many of the largest pallid sturgeon seen throughout the entire year of sampling.

For specific environmental variables associated with pallid sturgeon captures by macro and macro habitat types see Table 2. For the proportion of pallid sturgeon captured by gear in macro habitat and the proportion those habitats were sampled by pallid sturgeon size class see Tables 4 through 7 and for all sizes of pallid sturgeon combined see Table 8. Table 1. Number of bends sampled, mean number of deployments, and total number of deployments by macrohabitat for Segment 3 on the Missouri River during the sturgeon season and fish community season in 2009. N-E indicates the habitat is non-existent in the segment.

Gear	Number	Mean deploy-		Macrohabitat ^a												
	of Bends	deployments BRAD CHXO CC 7.95 N-E 56 N 8.00 N-E 52 N 8.00 N-E 56 N 7.97 N-E 56 N	O CONF DEND DRNG ISB OSB SCCL SCCS SCN TRIB TH								TRML	TRMS	WILD			
						Stu	rgeon Sea	ason								
1.0" Trammel Net	22	7.95	N-E	56	N-E	N-E	N-E	55	55	9	0	0	N-E	N-E	0	N-E
Gill Net																
Otter Trawl	22	8.00	N-E	52	N-E	N-E	N-E	56	50	18	0	0	N-E	N-E	0	N-E
						Fish Co	ommunity	v Season	n							
1.0" Trammel Net	22	8.00	N-E	56	N-E	N-E	N-E	62	53	5	0	0	N-E	N-E	0	N-E
Mini-Fyke Net	23	7.57	N-E	51	N-E	N-E	N-E	56	2	22	37	4	N-E	N-E	2	N-E
Otter Trawl	22		N-E	59	N-E	N-E	N-E	61	48	8	0	0	N-E	N-E	0	N-E

^a Habitat abbreviations and definitions presented in Appendix B.

Segment 3 - Pallid Sturgeon Captures by River Mile

Figure 2. Distribution of pallid sturgeon captures by river mile for Segment 3 of the Missouri River during 2009. Black bars represent pallid captures during the sturgeon season and white bars during the fish community season. Figure includes all pallid captures including non-random and wild samples.

На	bitat	Dept	h (m)	Bottom Ve	elocity (m/s)	Tempera	ture (°C)	Turbidi	ty (ntu)	Total pallids
Macro-	Meso-	Effort	Catch	Effort	Catch	Effort	Catch	Effort	Catch	caught
BRAD	BARS									
	CHNB									
	DTWT									
	ITIP									
	POOL									
	TLWG									
CHXO	BARS	0.4 (0.1-0.6)		0.06 (0.00-0.15)		13.9 (2.6-21.6)		39 (16-75)		
	CHNB	1.5 (0.7-3.9)	1.5 (0.9-2.8)	0.65 (0.11-0.95)	0.59 (0.11-0.83)	16.0 (2.6-22.8)	15.5 (2.8-22.5)	99 (14-1424)	115 (15-1408)	72
	DTWT									
	ITIP									
	POOL									
	TLWG									
CONF	BARS									
	CHNB									
	DTWT									
	ITIP									
	POOL									

Table 2. Pallid sturgeon capture summaries for all gears relative to habitat type and environmental variables on the Missouri River during 2009. Means (minimum and maximum) are presented. Habitat definitions and codes presented in Appendix B.

Ha	abitat	Dept	h (m)	Bottom Ve	elocity (m/s)	Tempera	ture (°C)	Turbidi	ity (ntu)	Total pallids
Macro-	Meso-	Effort	Catch	Effort	Catch	Effort	Catch	Effort	Catch	caught
	TLWG									
DRNG	BARS									
	CHNB									
	DTWT									
	ITIP									
	POOL									
	TLWG									
ISB	BARS	0.4 (0.1-1.1)		0.04 (0.00-0.13)		14.7 (2.7-22.0)		40 (18-77)		
	CHNB	1.4 (0.5-3.6)	1.4 (0.5-3.4)	0.64 (0.14-0.86)	0.58 (0.14-0.82)	16.4 (2.5-28.0)	16.0 (2.8-21.1)	99 (14-1460)	104 (14-360)	75
	DTWT									
	ITIP									
	POOL									
	TLWG									
OSB	BARS	0.3 (0.2-0.3)		0.02 (0.02-0.02)		3.8 (3.8-3.8)		50 (50-50)		
	CHNB	2.2 (0.8-6.3)	1.7 (0.8-3.2)	0.71 (0.28-0.96)	0.63 (0.33-0.79)	15.8 (2.6-22.8)	15.2 (2.7-21.3)	92 (13-1420)	186 (19-1360)	22
	DTWT									
	ITIP									
	POOL									
	TLWG									

Ha	ıbitat	Dept	h (m)	Bottom Ve	elocity (m/s)	Tempera	ature (°C)	Turbid	ity (ntu)	Total pallids
Macro-	Meso-	Effort	Catch	Effort	Catch	Effort	Catch	Effort	Catch	caught
SCCL	BARS	0.4 (0.2-0.7)		0.07 (0.00-0.14)		13.6 (2.7-20.1)		46 (12-82)		
	CHNB	1.3 (0.6-4.0)	1.3 (0.9-2.4)	0.58 (0.02-0.83)	0.44 (0.02-0.60)	15.4 (2.7-22.5)	16.1 (2.7-22.3)	93 (18-377)	107 (18-352)	21
	DTWT									
	ITIP									
	POOL									
	TLWG									
SCCS	BARS	0.4 (0.2-0.9)		0.05 (0.00-0.20)		17.8 (2.9-24.5)		34 (7-71)		
	CHNB									
	DTWT									
	ITIP									
	POOL									
	TLWG									
SCN	BARS									
	CHNB									
	DTWT									
	ITIP									
	NULL	0.5 (0.3-0.6)		0.01 (0.01-0.01)		19.1 (15.2-23.0)		48 (32-64)		
	TLWG									
TRIB	BARS									

Ha	bitat	Depth	n (m)	Bottom Velo	city (m/s)	Temperatu	ure (°C)	Turbidit	y (ntu)	Total
Macro-	Meso-	Effort	Catch	Effort	Catch	Effort	Catch	Effort	Catch	- pallids caught
	CHNB									
	DTWT									
	ITIP									
	POOL									
	TLWG									
TRML	BARS									
	CHNB									
	DTWT									
	ITIP									
	POOL									
	TLWG									
TRMS	BARS	0.6 (0.4-0.7)		0.01 (0.01-0.01)		25.0 (25.0-25.0)		74 (74-74)		
	CHNB									
	DTWT									
	ITIP									
	POOL									
	TLWG									

Year			Stock Data		R	ecapture Da	Growth Data		
class	N	Length (mm)	Weight (g)	K _n	Length (mm)	Weight (g)	K _n	Length (mm/d)	Weight (g/d)
	_				653	928.5	789		
1997	2				1	49.0	0.046		
1998	2	540			866	2405.0	0.789	0.100	
1998	2	0			35	440.0	0.038	0.011	
2001	5	220			417	238.0	0.858	0.070	
2001	5	40			40	100.1	0.079	0.008	
2002	5	286			600	714.2	0.792	0.136	
2002	5	18			43	162.8	0.021	0.016	
2003	1	255			344	139.0	1.013	0.049	
2004	5				341	127.6	0.956		
					8	7.9	0.044		
2005	32	259	40.0	1.413	339	122.5	0.929	0.081	0.045
2000	52	20			8	9.2	0.030	0.017	
2006	38	263	78.0	1.356	328	110.7	0.920	0.108	0.065
2000	50	15	19.7	0.133	12	11.7	0.036	0.014	0.020
2007	47	243	68.5	1.207	305	99.8	1.033	0.183	0.108
2007	47	29	35.5	0.142	16	17.4	0.075	0.030	0.033
2008	45	287	81.9	1.081	232	45.8	1.086	0.382	0.146
2000	45	16	15.4	0.077	18	9.6	0.056	0.081	0.098
2009	3				282	68.3	0.928		
2007	5				61	41.5	0.118		

Table 3. Mean fork length, weight, relative condition factor (Kn) and absolute growth rates for hatchery-reared pallid sturgeon captures by year class at the time of stocking and recapture during 2009 from Segment 3 of the Missouri River. Relative condition factor was calculated using the equation in Shuman et al. (In review).

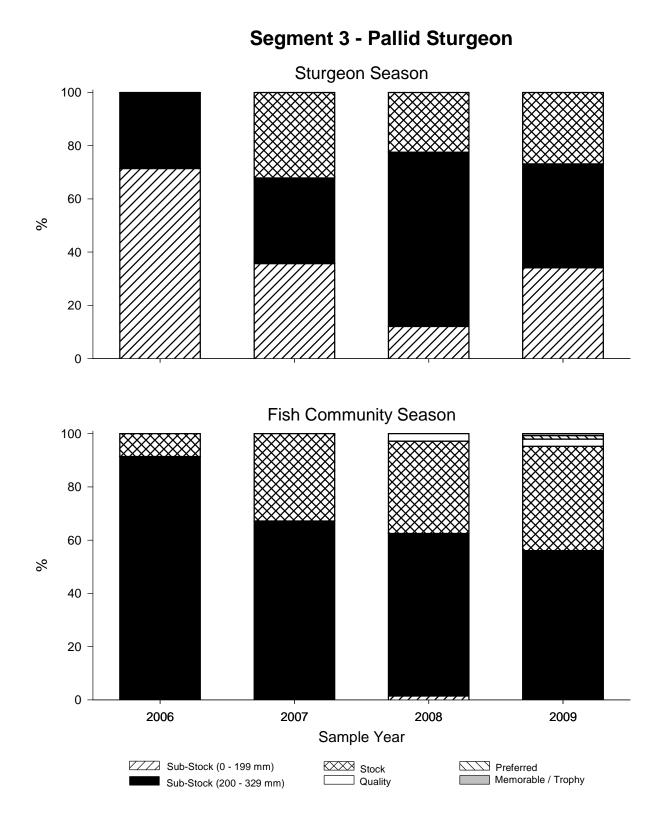
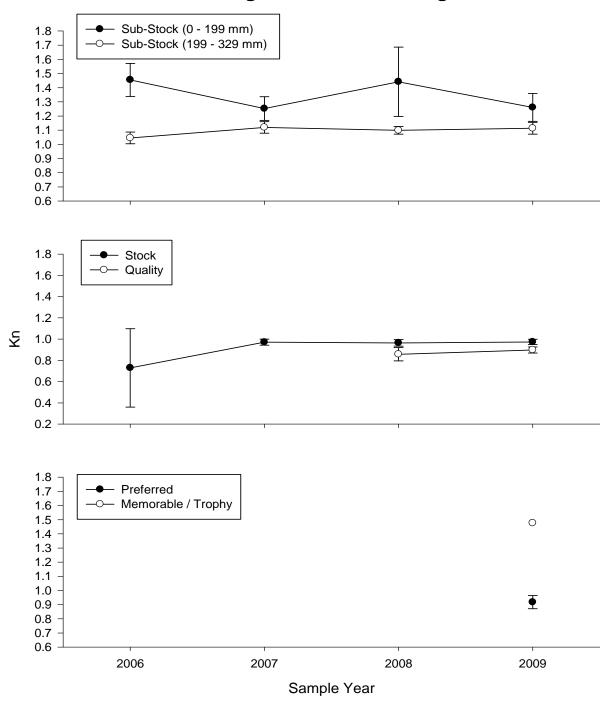
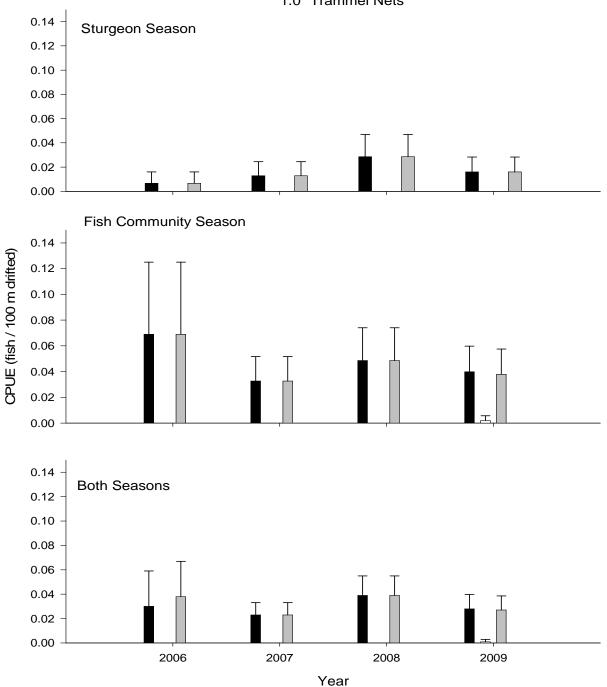




Figure 3. Proportion by length group for all pallid sturgeon captured with all gear by length category from 2005-2009 in Segment 10 in the Missouri River. Length categories determined using the methods proposed by Shuman et al. (2006).

Segment 3 - Pallid Sturgeon

Figure 4. Relative condition factor (Kn) for all pallid sturgeon captured with all gear by incremental relative stock density (RSD) length category from 2006-2009 in Segment 3 in the Missouri River. Length categories determined using the methods proposed by Shuman et al. (2006). Relative condition factor was calculated using the equation in Shuman et al. (In review).

Segment 3 - Pallid Sturgeon

1.0" Trammel Nets

Figure 6. Mean annual catch per unit effort (+/- 2 SE) of all (black bars), wild (white bars), hatchery reared (gray bars), and unknown origin (cross-hatched bars) pallid sturgeon using 1.0" trammel nets in Segment 3 of the Missouri River from 2006-2009. Pallid sturgeon of unknown origin are awaiting genetic verification.

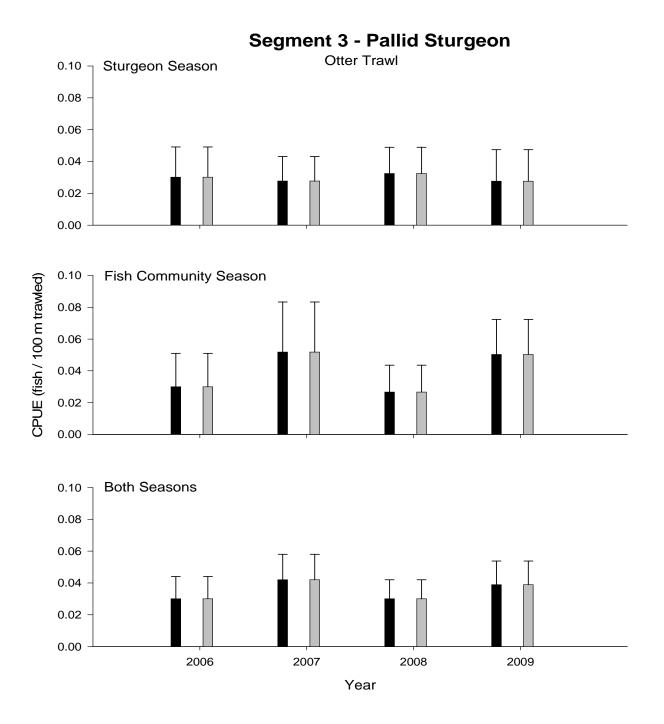


Figure 7. Mean annual catch per unit effort (+/- 2 SE) of all (black bars), wild (white bars), hatchery reared (gray bars), and unknown origin (cross-hatched bars) pallid sturgeon using otter trawls in Segment 3 of the Missouri River from 2006-2009. Pallid sturgeon of unknown origin are awaiting genetic verification.

Table 4. Total number of sub-stock size (0-199 mm) pallid sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Coor	N							Macro	habitat ^a						
Gear	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Se	ason							
1.0" Trammel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	7	0	57	0	0	0	29	14	0	0	0	0	0	0	0
Ouer Hawi		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunit	y Season							
1.0" Trammel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iviini 1 yke ivet		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ouer Hawi		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Table 5. Total number of sub-stock size (200-329 mm) pallid sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Coor	N							Macro	habitat ^a						
Gear	Ν	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Se	ason							
1.0" Trammel	5	0	80	0	0	0	0	20	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	3	0	33	0	0	0	33	33	0	0	0	0	0	0	0
Otter Hawi		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunit	y Season							
1.0" Trammel	8	0	50	0	0	0	25	25	0	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
winn i yre i et		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	15	0	27	0	0	0	47	27	0	0	0	0	0	0	0
Ouer Hawi		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Table 6. Total number of stock size (330-629 mm) pallid sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

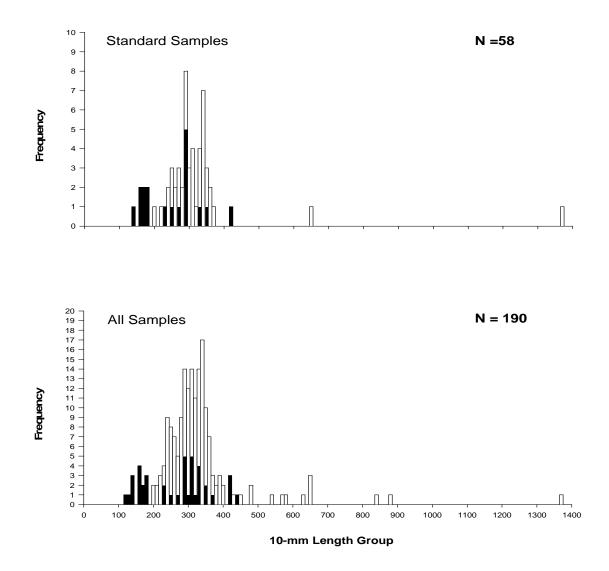
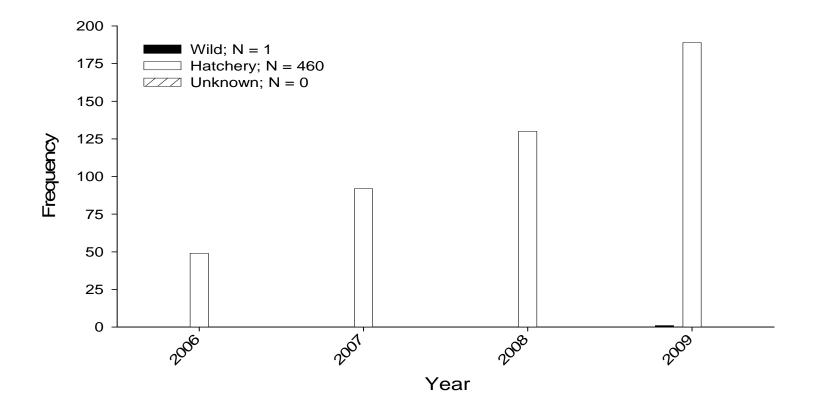

Gear	N							Macro	habitat ^a						
Geal	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Se	ason							
1.0" Trammel	2	0	0	0	0	0	0	100	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	1	0	100	0	0	0	0	0	0	0	0	0	0	0	0
Ouer mawn		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunit	y Season							
1.0" Trammel	6	0	67	0	0	0	17	0	17	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iviini 1 yke 1vet		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	9	0	33	0	0	0	56	0	11	0	0	0	0	0	0
		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Table 7. Total number of quality size and greater (≥ 630 mm) pallid sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Gear	N							Macro	habitat ^a						
Gear	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Se	ason							
1.0" Trammel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Otter Hawi		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunit	y Season							
1.0" Trammel	2	0	100	0	0	0	0	0	0	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iviim-i yke net		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ouer mawi		0	34	0	0	0	34	26	5	0	0	0	0	0	0


Table 8. Total number of pallid sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Gear	N							Macro	habitat ^a						
Gear	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Se	ason							
1.0" Trammel	7	0	57	0	0	0	0	43	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	11	0	55	0	0	0	27	18	0	0	0	0	0	0	0
Otter Hawi		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunit	y Season							
1.0" Trammel	16	0	63	0	0	0	19	13	6	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ivinii 1 yite 1 tet		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	24	0	29	0	0	0	50	17	4	0	0	0	0	0	0
		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Segment 3 - Pallid Sturgeon

Figure 8. Length frequency of pallid sturgeon captured during the sturgeon season (black bars) and fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all sampling conducted during 2009.

Segment 3 - Annual Pallid Sturgeon Capture History

Figure 9. Annual capture history of wild (black bars), hatchery reared (white bars), and unknown origin (cross-hatched bars) pallid sturgeon collected in Segment 3 of the Missouri River from 2006-2009. Figure is designed to compare overall pallid sturgeon captures from year to year and is biased by variable effort among years. Figure includes all pallid captures including non-random and wild samples.

Shovelnose X Pallid Sturgeon Hybrids

No shovelnose x pallid sturgeon hybrids were collected in segment 3 during 2009 or during the previous three years of sampling.

Targeted Native River Species

Shovelnose Sturgeon

During 2009 a total of 375 shovelnose sturgeon were sampled in segment 3 of the Missouri River, very similar to the 378 sampled in 2008. More were sampled during the fish community season (n = 272) than the sturgeon season (n = 103). Trammel nets captured more shovelnose sturgeon (n = 202) than all other gears combined, while trotlines sampled 105 and the otter trawl 68.

Over the past four years of sampling trammel net CPUE of shovelnose sturgeon has been considerably higher during the fish community season compared to the sturgeon season (Figure 11). Very few shovelnose sturgeon smaller than stock size have been captured using trammel nets in all four sampling years. Trammel net CPUE of stock size and larger shovelnose sturgeon has remained relatively constant over the four years of sampling.

The otter trawl did not capture any shovelnose sturgeon smaller than stock size in 2009, which was the first year that these smaller size classes were absent from the catch (Figure 12). Overall otter trawl CPUE of stock size and larger shovelnose sturgeon was similar in 2009 to the three previous years.

The shovelnose sturgeon catch was relatively evenly distributed throughout the length of segment 3. While no smaller (sub-stock) sized shovelnose were found in 2009, the overall size distribution of shovelnose captured was similar to past years since very few smaller fish have been captured in any year of sampling (Figure 14).

Shovelnose sturgeon averaged 510 mm FL and 539 g in segment 3 during 2009. The largest and smallest fish measured 815 and 250 mm FL, respectively. No pattern has been observed in the relative weight of shovelnose sturgeon within a size class over the four sampling seasons (Figure 15). However, the stock sized group has consistently had the highest on average relative weight of all size classes sampled, while the preferred size class has had the lowest.

32

The specific macro habitats where different size classes of shovelnose sturgeon were sampled by gear and the proportion that those habitats were sampled can be found in Tables 9 through 12. For the macro habitats where all shovelnose sturgeon combined were sampled is in Table 13.

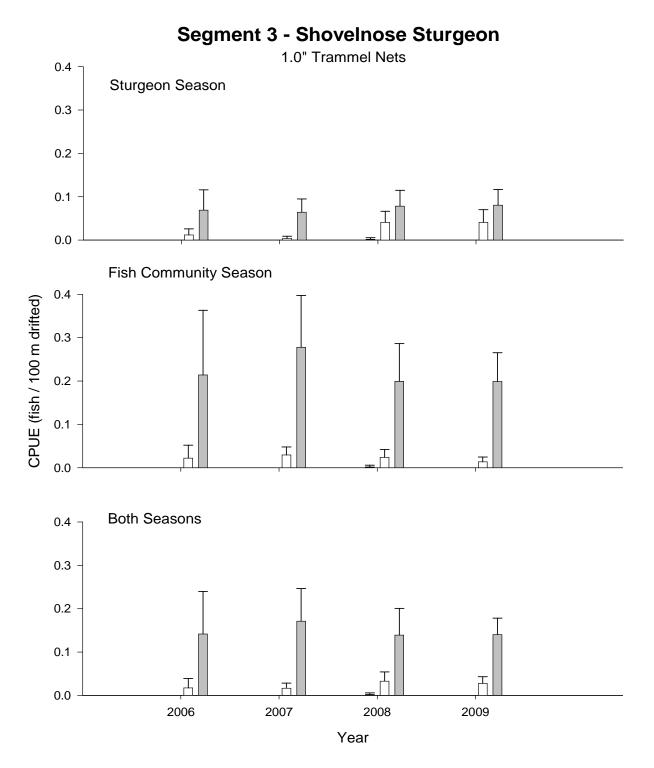


Figure 11. Mean annual catch per unit effort (+/- 2 SE) of sub-stock size (0-149 mm; cross-hatched bars), sub-stock size (150-249 mm; black bars), stock size (250-379 mm; white bars), and quality and above size (> 380 mm; gray bars) shovelnose sturgeon using 1.0" trammel nets in Segment 3 of the Missouri River from 2006-2009.

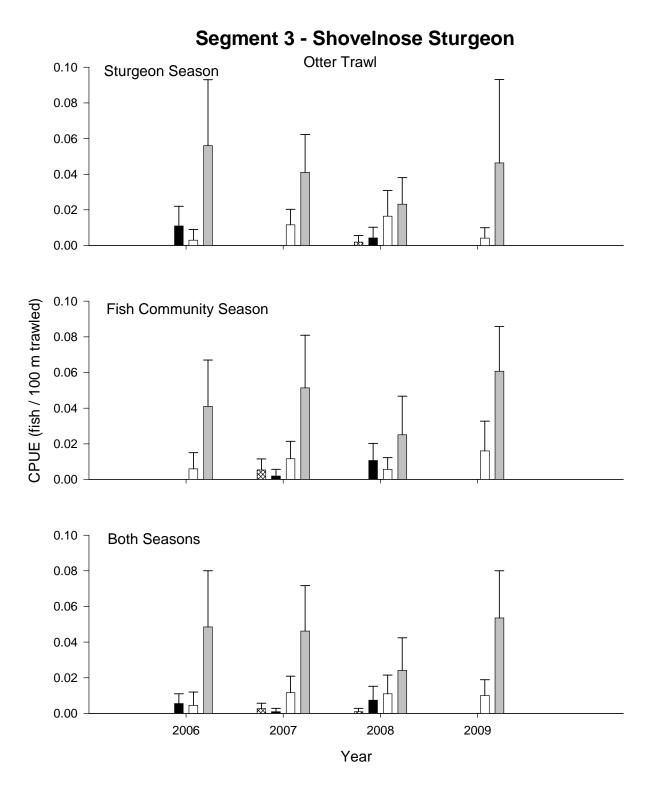


Figure 12. Mean annual catch per unit effort (+/- 2 SE) of sub-stock size (0-149 mm; cross-hatched bars), sub-stock size (150-249 mm; black bars), stock size (250-379 mm; white bars), and quality and above size (> 380 mm; gray bars) shovelnose sturgeon using otter trawls in Segment 3 of the Missouri River from 2006-2009.

Table 9. Total number of sub-stock size (0-149 mm) shovelnose sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Com	N							Macro	habitat ^a						
Gear	Ν	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Se	ason							
1.0" Trammel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Otter Hawi		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunit	y Season							
1.0" Trammel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ivinii i yko ivot		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Table 10. Total number of sub-stock size (150-249 mm) shovelnose sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Gear	N							Macro	habitat ^a						
Geal	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stu	geon Se	ason							
1.0" Trammel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ouer Hawi		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunity	y Season							
1.0" Trammel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iviini 1 yko 140t		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Table 11. Total number of stock size (250-379 mm) shovelnose sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Gear	N							Macro	habitat ^a						
Geal	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stu	geon Se	ason							
1.0" Trammel	13	0	31	0	0	0	38	31	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	2	0	0	0	0	0	50	50	0	0	0	0	0	0	0
Ouer mawn		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunity	y Season							
1.0" Trammel	6	0	33	0	0	0	17	50	0	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iviini 1 yko 1vot		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	5	0	0	0	0	0	40	60	0	0	0	0	0	0	0
		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Table 12. Total number of quality size and greater (\geq 380 mm) shovelnose sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Gear	N							Macro	habitat ^a						
Gear	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Sea	ason							
1.0" Trammel	30	0	43	0	0	0	27	27	3	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	13	0	38	0	0	0	31	23	8	0	0	0	0	0	0
Otter Hawi		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Cor	nmunity	v Season							
1.0" Trammel	78	0	54	0	0	0	31	14	1	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iviini 1 yke ivet		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	29	0	34	0	0	0	24	28	14	0	0	0	0	0	0
		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Table 13. Total number of shovelnose sturgeon captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Gear	N							Macro	habitat ^a						
Gear	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Sea	ason							
1.0" Trammel	43	0	40	0	0	0	30	28	2	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
Otter Trawl	15	0	33	0	0	0	33	27	7	0	0	0	0	0	0
Otter Hawi		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Cor	nmunity	y Season							
1.0" Trammel	84	0	52	0	0	0	30	17	1	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini-Fyke Net	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iviini 1 yko 1vot		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	34	0	29	0	0	0	26	32	12	0	0	0	0	0	0
		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Segment 3 - Shovelnose Sturgeon

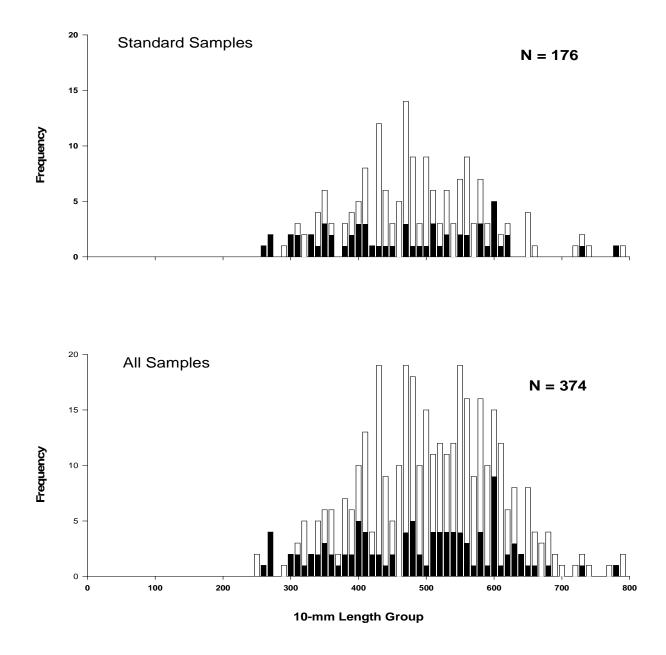


Figure 13. Length frequency of shovelnose sturgeon during the sturgeon season (black bars) and fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all sampling conducted during 2009.

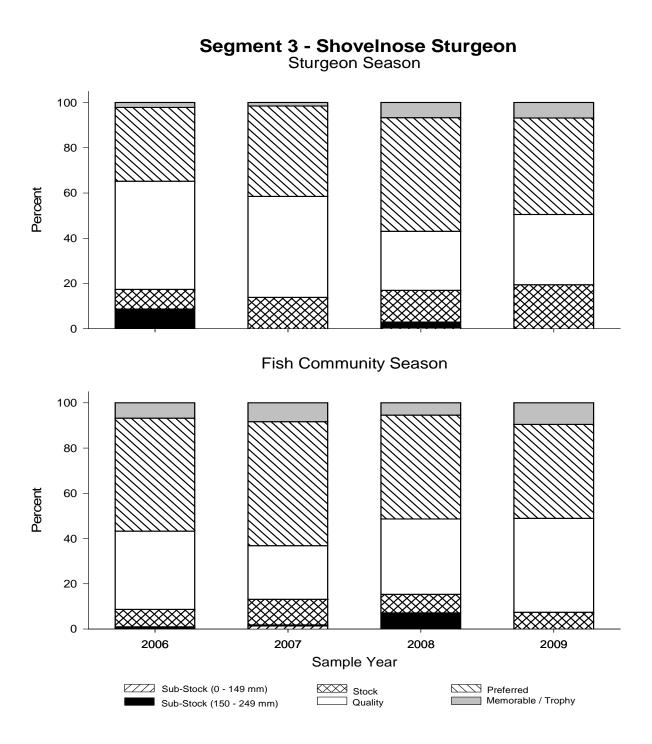
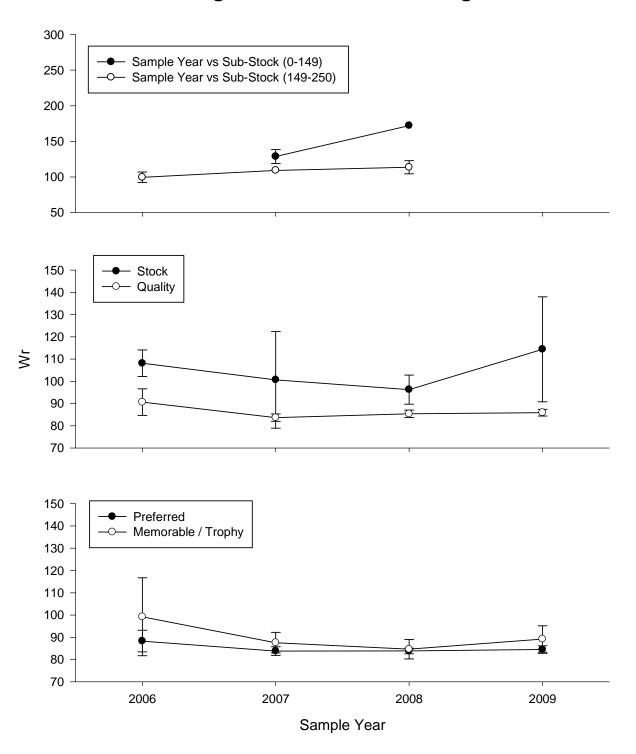



Figure 14. Proportion by length group for all shovelnose sturgeon captured with all gear by length category from 2006 to 2009 in Segment 3 in the Missouri River. Length categories determined using the methods proposed by Quist (1998).

Segment 3 - Shovelnose Sturgeon

Figure 15. Relative weight (Wr) for all shovelnose sturgeon captured with all gear by incremental relative stock density (RSD) length category from 2006-2009 in Segment 3 in the Missouri River. Length categories determined using the methods proposed by Quist (1998).

Sturgeon Chub

A total of 242 sturgeon chubs were collected in 2009, a substantial decrease from 2008 when 663 were sampled. More sturgeon chubs were collected during the fish community season (n = 165) than during the sturgeon season (n = 77). All sturgeon chubs were sampled using the otter trawl.

Overall otter trawl CPUE of sturgeon chubs was considerably lower in 2009 than the three previous sampling seasons (Figure 16). Up until 2009 CPUE had remained relatively constant.

Sturgeon chubs averaged 67 mm TL in 2009, which was larger than the 2008 average of 50 mm TL. There was an obvious void in the length frequency histogram of sturgeon chubs in 2009 when compared to 2008. Very few sturgeon chubs smaller than 50 mm TL were captured in 2009, whereas during 2008 the vast majority were smaller than 50 mm TL (Figure 17). Based on Herman et al. 2008a the strong year class in 2008 was age-1 fish, while few age-0 fish were observed. During 2009 we saw very few age-1 fish and again few age-0 fish, while the majority of fish captured were age-2.

Although sturgeon chubs were present throughout the majority of segment 3, they were most abundant between rivermiles 1640.5 and 1644.5. This is somewhat interesting since in the past the abundance of sturgeon chubs for the most part has been greater as you go downstream in segment 3.

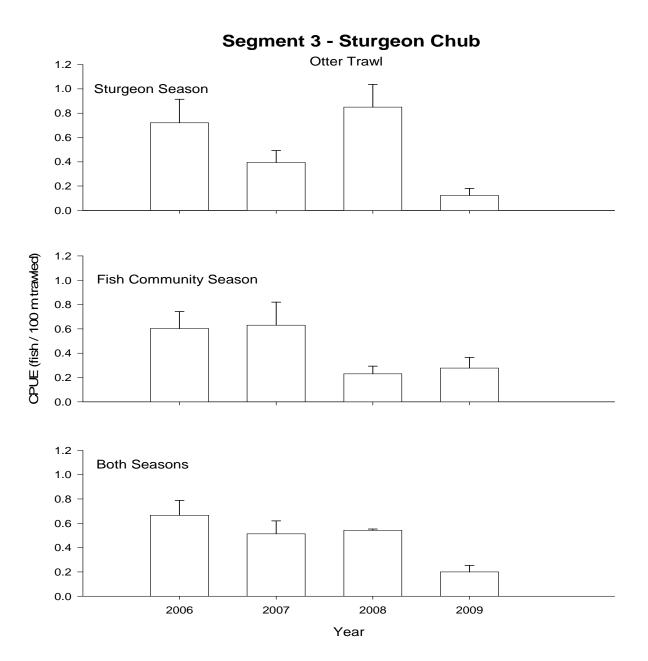


Figure 16. Mean annual catch per unit effort (+/- 2 SE) of sturgeon chub using otter trawls in Segment 3 of the Missouri River from 2006-2009.

Segment 3 - Sturgeon Chub

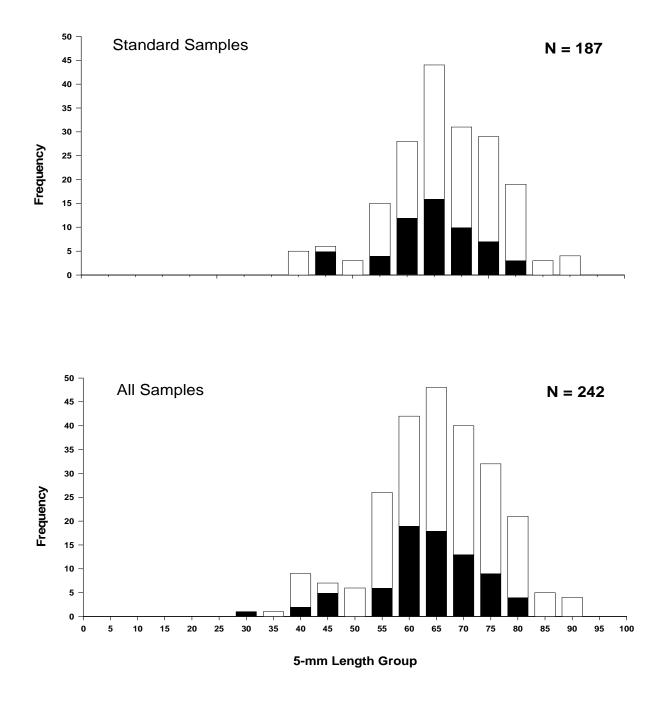


Figure 17. Length frequency of sturgeon chub during the sturgeon season (black bars) and the fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all sampling conducted during 2009.

Sicklefin Chub

A total of 163 sicklefin chubs were collected in segment 3 during 2009, an increase from 2008 when 85 were sampled. More sicklefin chubs were collected during the fish community season (n = 146) than during the sturgeon season (n = 17). All sicklefin chubs were sampled in the otter trawl.

The total increase in sicklefin chubs captured was not manifested in the CPUE estimates. Otter trawl CPUE of sicklefin chubs was only slightly higher in 2009 when compared to 2008 and has been similar throughout the four years of sampling (Figure 18). Non-random subsamples accounted for 78 of the total 163 sicklefin chubs captured, which are not used to look at relative abundance and are not included in the CPUE estimates. The increase in non-random subsamples comes from both more duplicate subsamples do to the increase in pallid sturgeon catch and non-random sampling for pallid sturgeon using the otter trawl.

Sicklefin chubs averaged 83 mm TL in 2009 with the largest and smallest specimens measuring 106 and 62 mm TL, respectively. The 2009 average length was similar to the 2008 average of 86 mm TL. The size frequency histogram of sicklefin chubs differed in 2009 to that of 2008 (Figure 19). In 2008 very few fish smaller than 75 mm TL were observed, whereas in 2009 this size class made up a large proportion of the total. The majority of these fish are likely age-1 fish (Herman et al. 2008b). In 2009 few if any age-0 fish were observed, but both age-1 and age-2 were abundant and again similar to 2008 few age-3 fish were found.

Similar to previous years of sampling, sicklefin chubs were more abundant in the downstream most river bends in segment 3. The furthest upstream rivermile where sicklefin chubs were sampled was rivermile 1667.

47

Segment 3 - Sicklefin Chub

Otter Trawl

Figure 18. Mean annual catch per unit effort (+/- 2 SE) of sicklefin chub using otter trawls in Segment 3 of the Missouri River from 2006-2009.

Segment 3 - Sicklefin Chub

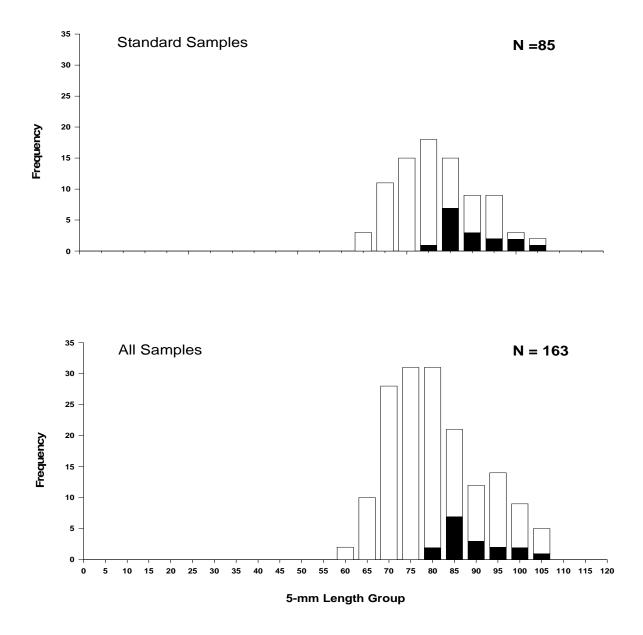


Figure 19. Length frequency of sicklefin chub during the sturgeon season (black bars) and the fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all sampling conducted during 2009.

Sand Shiner

A total of 820 sand shiners were sampled in segment 3 during 2009, a slight decrease from 2008 when 918 were collected. All sand shiners were collected during the fish community season and all but one were sampled using mini fyke nets. Sand shiner CPUE in mini fykes was 4.7 fish/net night in 2009. Although sand shiner CPUE in 2009 was similar to 2008 (5.7 fish/ net night) and 2007 (5.6 fish/net night), it was as a four year low (Figure 22). From 2007 to 2009 sand shiner CPUE has been less than half of the CPUE recorded in 2006 (13.7 fish/ net night).

Sand shiners averaged 38.5 mm TL in 2009, slightly smaller than the 2008 average of 41.8 mm TL. The 2009 sand shiner length frequency histogram indicate similar ages of fish sampled in the past four years (Figure 23). However, during 2009 a slightly higher proportion of age-0 fish occurred in the catch compared to age -1 fish, while in 2008 both year classes were about equal. During both 2009 and 2008 sand shiners were comprised of age-0 and age-1 fish (Datillo et al. 2008a).

Sand shiners were collected throughout the length of segment 3, although their abundance was somewhat patchy. We collected sand shiners in all types of macro habitats that were sampled using mini fyke nets.

Segment 3 - Sand Shiner

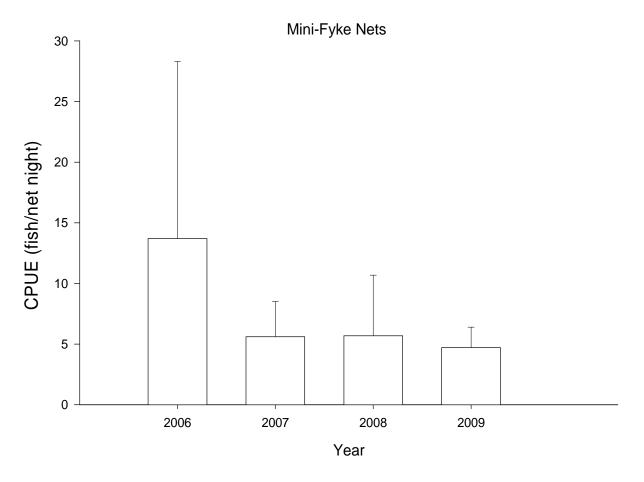


Figure 22. Mean annual catch per unit effort (+/- 2 SE) of sand shiner with mini-fyke nets in Segment 3 of the Missouri River during fish community season 2006-2009.

Standard Samples N = 654 Frequency All Samples N = 655 Frequency 5-mm Length Group

Segment 3 - Sand Shiner

Figure 23. Length frequency of sand shiner during the sturgeon season (black bars) and the fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all sampling conducted during 2009.

Hybognathus spp.

All *Hybognathus spp.* collected in 2009 were identified as western silvery minnow *Hybognathus argyritis*. In the field we take a subsample of all *Hybognathus spp.* collected and open their heads up to look at the basioccipital process to identify them between western silvery and plains minnows *Hybognathus placitus*. In addition, general phenotype is also used to identify suspected plains minnows. In the past four years we've had only two confirmed plains minnows identified, which could be a slight under representation of this species abundance in the Missouri River downstream of Fort Peck Dam. Additionally, we have not collected any brassy minnows *Hybognathus hankinsoni* in all three years of sampling.

During 2009 we identified a total of 22 *Hybognathus* specimens, 15 identified as western silvery minnows and 5 samples identified just to genus. This was a substantial decrease from the previous years of sampling. For instance, during 2008 at total of 377 western silvery minnows were sampled. Western silver minnow CPUE using mini fyke nets was at a four year low in 2009 at 0.1 fish/net night (Figure 24). From 2006 to 2008 CPUE had steadily increased to a high in 2008 at 2.8 fish/net night. While 2007 and 2008 had relatively high variance associated with the estimates, the 2009 catch had low variance and is likely attributed to a decline in the population.

Western silver minnows averaged 40.5 mm TL in 2009, which was significantly lower than the 2008 average of 70.2 mm TL. The length frequency histogram of western silvery minnows in 2009 suggests the age structure was comprised of almost all age-0 fish, with few age-1 fish present and one possible age-2 fish (Datillo et al. 2008b). This is in contrast to 2008 when about equal numbers of age-0 and age-1 fish were present with a few fish were possibly of age-2.

The relatively few western silvery minnows that were sampled in 2009 were captured throughout the length of segment 3, with no distinct spatial pattern in abundance.

53

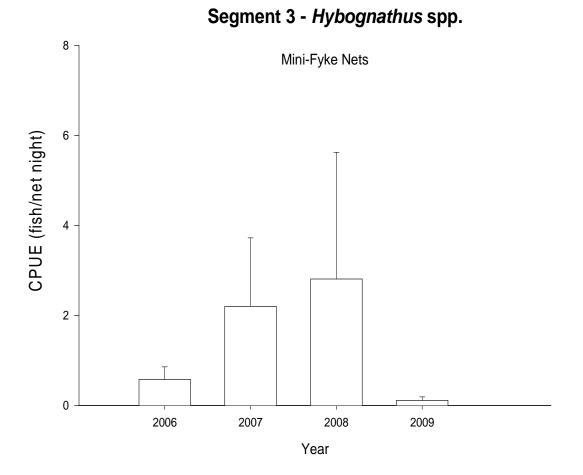


Figure 24. Mean annual catch per unit effort (+/- 2 SE) of *Hybognathus* spp. with mini-fyke nets in Segment 3 of the Missouri River during fish community season 2006-2009.

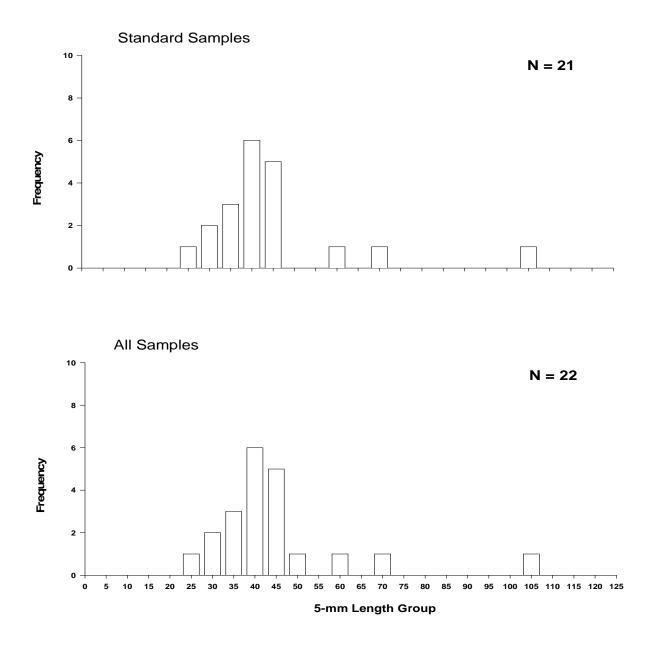


Figure 25. Length frequency of *Hybognathus* spp. caught during the sturgeon season (black bars) and the fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all sampling conducted during 2009.

Blue Sucker

A total of 23 blue suckers were sampled in segment 3 during 2009, 21 and 2 during the fish community and sturgeon seasons, respectively. Trammel nets captured 22 blue suckers, while the otter trawl captured one. The one blue sucker sampled in the otter trawl was 96 mm TL, which is the smallest blue sucker collected in the four years of the population assessment program in Montana. Previously the smallest blue sucker captured was 576 mm TL collected in 2007. Before 2009, we had no evidence from the population assessment data that blue sucker recruitment had been occurring in the Missouri River downstream of Fort Peck Dam. This likely age-0 blue sucker was captured on August 24th at rivermile 1591 in a non-random subsample using the otter trawl.

The total number of blue suckers sampled in 2009 was up from that of 2008 (n = 14), 2007 (n = 10) and 2006 (n = 4). Overall trammel net CPUE for blue suckers has also risen over the past four years to a high in 2009 of 0.02 fish/100 m, which is still relatively low compared to other fishes sampled (Figure 27). The general pattern over the last four years for slightly higher catch rates to occur during the fish community season when compared to the sturgeon season (Figure 27). The otter trawl has not been an effective gear at monitoring relative abundance of adult blue sucker, although it is the gear we would expect to see recruitment of age-0 fish as was seen in 2009 (Figure 28).

Blue suckers were sampled throughout much of the length of segment 3, with similar catches occurring throughout the sampling area. For the specific macro habitats that blue suckers were sampled by gear see Table 14.

Except for the one YOY blue sucker collected in 2009, the length frequency histogram looks similar to past years will all other fish being larger than 500 mm TL (Figure 29).



Figure 27. Mean annual catch per unit effort (+/- 2 SE) of blue sucker using 1.0" trammel nets in Segment 3 of the Missouri River from 2006-2009.

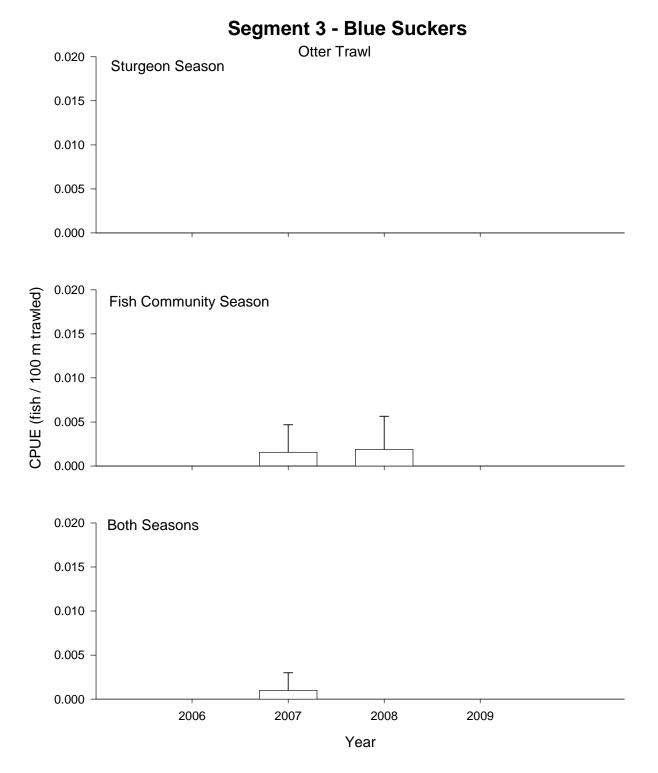


Figure 28. Mean annual catch per unit effort (+/- 2 SE) of blue sucker using otter trawls in Segment 3 of the Missouri River from 2006-2009.

Table 14. Total number of blue suckers captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Gear	N							Macro	habitat ^a						
Gear	1	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	geon Se	ason							
1.0" Trammel	2	0	50	0	0	0	0	50	0	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Otter Trawl		0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunit	y Season							
1.0" Trammel	16	0	31	0	0	0	31	38	0	0	0	0	0	0	0
Net		0	36	0	0	0	34	27	2	0	0	0	0	0	0
Mini Falas Nat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mini-Fyke Net		0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ouer Trawi		0	34	0	0	0	34	26	5	0	0	0	0	0	0

Segment 3 - Blue Sucker

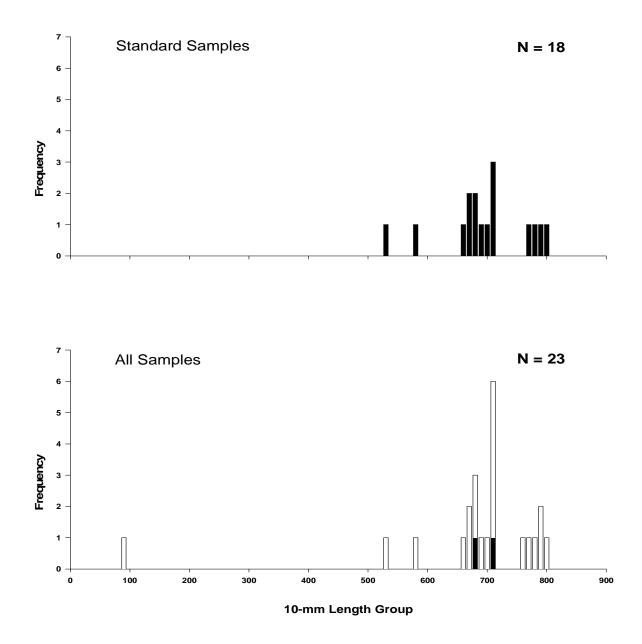


Figure 29. Length frequency of blue sucker during the sturgeon season (black bars) and the fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all sampling conducted during 2009.

Sauger

A total of 253 sauger were sampled in segment 3 during 2009, 153 and 100 during the fish community and sturgeon seasons, respectively. This was an overall decrease from 296 sampled during 2008. During 2008 trammel nets caught 165 sauger, while the otter trawl captured 66, mini fyke nets 14 and trotlines 8. On average trotlines captured the largest sauger (mean TL = 425 mm), followed by trammel nets (mean TL = 347 mm), otter trawl (mean TL = 314 mm) and mini fyke nets (mean TL = 273 mm).

Overall trammel net CPUE was slightly lower in 2009 (0.17 fish/100 m) when compared to 2008 (0.21 fish/100 m), but was still higher than 2006 and 2007 (Figure 21). During the past two years sauger CPUE in trammel nets has been considerably higher during the sturgeon season when compared to the fish community season. Trammel nets have been the most effective gear in sampling adult sauger in segment 3 over the past four years of sampling.

Overall sauger CPUE using the otter trawl was similar to 2008 with 0.05 fish/100 m (Figure 32). With such low catch rates the otter trawl doesn't seem to be nearly as effective at monitoring the relative abundance of sauger as trammel nets.

Mini fyke nets have been the main gear to monitor the abundance of age-0 sauger in segment 3 during the past four years. In 2009 few if any age-0 sauger were sampled using mini fyke nets. The smallest sauger sampled measured 174 mm and was caught on August 11th, therefore this fish was likely age-1. The overall mini fyke net CPUE of sauger decreased in 2009 to a four year low of .07 fish/net night, a substantial decrease from a high in 2006 of 0.24 fish/net night (Figure 30).

Sauger where captured throughout both seasons and the length of segment 3. However, the largest catches occurred during both May through early June and October. During the spring three river bends between river miles 1648.5 and 1695 had significantly higher catches of sauger than other river bends sampled during the spring. Similarly, during October three river bends between river miles 1644.5 had higher catches than other river bends sampled during the fall.

The length frequency histogram for sauger sampled in 2009 looks very similar to that of 2008, with the exception that zero YOY sauger were sampled in 2009 while approximately eight were sampled in 2008. The sauger rearing habitat that occurs in segment 3 is in the downstream

most portions of the segment and therefore random bend selection can have an influence on the detection of YOY sauger within a given year. Segment 4, which is downstream of segment 3 is a better indicator of YOY sauger abundance than either segment 3 or 2.

For the specific marco habitats where sauger where sampled by gear in segment 3 during 2009 see Table 15.

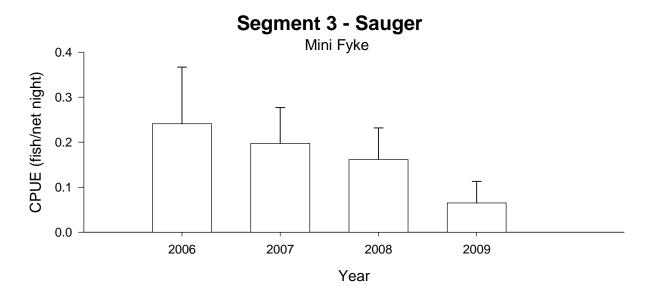


Figure 30. Mean annual catch per unit effort (+/- 2 SE) of sauger using mini fyke nets in Segment 3 of the Missouri River from 2006-2009.

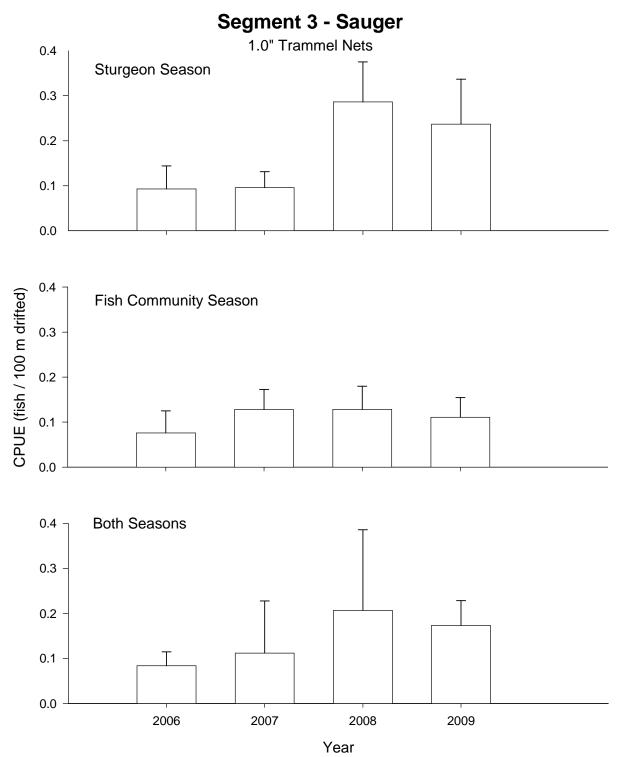


Figure 31. Mean annual catch per unit effort (+/- 2 SE) of sauger using 1.0" trammel nets in Segment 3 of the Missouri River from 2006-2009.

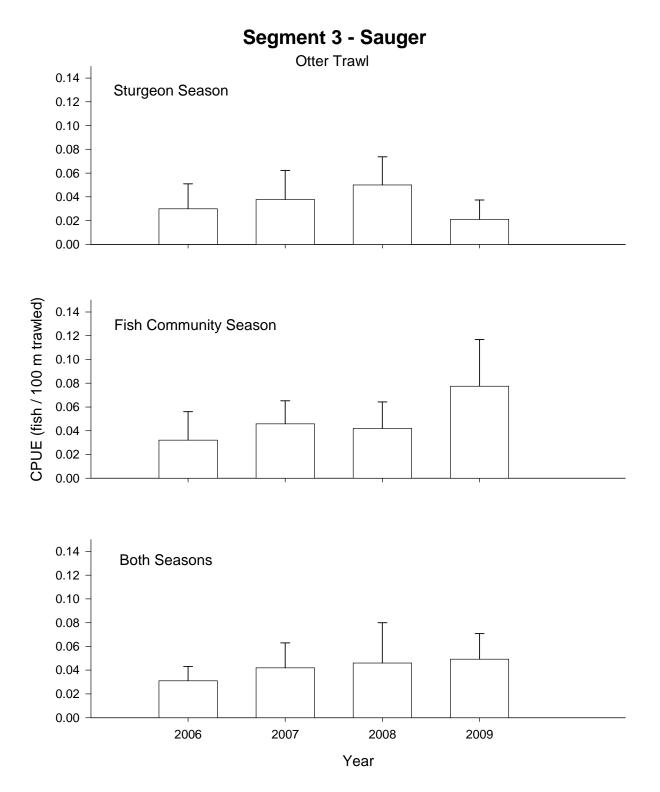


Figure 32. Mean annual catch per unit effort (+/- 2 SE) of sauger using otter trawls in Segment 3 of the Missouri River from 2006-2009.

Table 15. Total number of sauger captured for each gear during each season and the proportion caught within each macrohabitat type in Segment 3 of the Missouri River during 2009. The percent of total effort for each gear in each habitat is presented on the second line of each gear type. N-E indicates the habitat is non-existent in the segment.

Gear	Ν							Macro	habitat ^a						
Gear	IN	BRAD	CHXO	CONF	DEND	DRNG	ISB	OSB	SCCL	SCCS	SCN	TRIB	TRML	TRMS	WILD
						Stur	rgeon Se	ason							
1.0" Trammel	80	0	43	0	0	0	16	39	3	0	0	0	0	0	0
Net		0	37	0	0	0	28	30	5	0	0	0	0	0	0
Gill Net															
	8	0	38	0	0	0	13	38	13	0	0	0	0	0	0
Otter Trawl	•	0	31	0	0	0	32	27	9	0	0	0	0	0	0
						Fish Co	mmunit	y Season							
1.0" Trammel	42	0	33	0	0	0	24	38	5	0	0	0	0	0	0
Net	•	0	36	0	0	0	34	27	2	0	0	0	0	0	0
	14	0	21	0	0	0	29	0	14	14	21	0	0	0	0
Mini-Fyke Net	•	0	29	0	0	0	32	1	13	21	2	0	0	1	0
Otter Trawl	36	0	31	0	0	0	25	17	28	0	0	0	0	0	0
Ouer Trawi	•	0	34	0	0	0	34	26	5	0	0	0	0	0	0

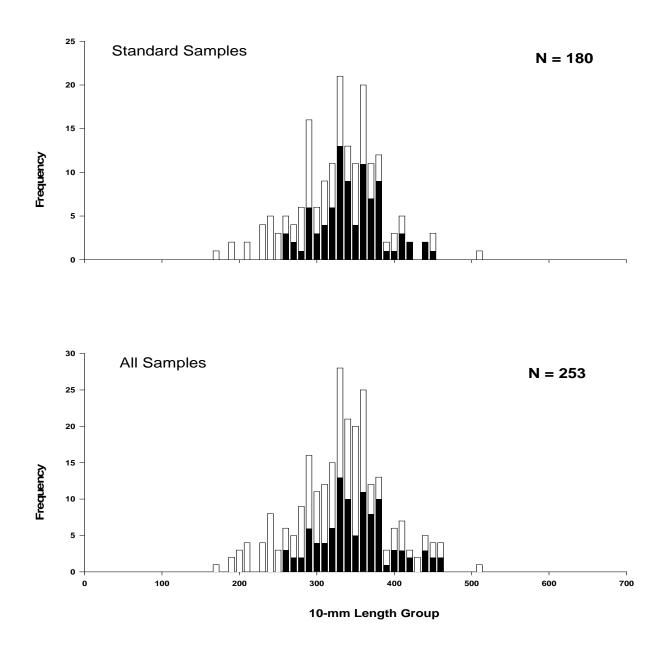


Figure 33. Length frequency of sauger during the sturgeon season (black bars) and the fish community season (white bars) in Segment 3 of the Missouri River during 2009. Standard samples include standard gears, random bends, and random subsamples. All samples include all sampling conducted during 2009.

Missouri River Fish Community

During 2009 a total of 9,461 fish consisting of 33 species were collected in segment 3 of the Missouri River. Mini fyke nets collected 68% of all fish sampled, followed by otter trawls (15%), trammel nets (10%) and trotlines 7%. For this section, I will only talk about fish that had a sample size of greater than 50 and are not a target species within the population assessment program.

Fathead minnows *Pimephales promelas* were the most abundant fish in 2009 with 1,621, all of which were sampled using mini fyke nets. Seventy-two percent (1,166) of all fathead minnows sampled where found in two subsamples within one river bend (river mile 1695).

River carpsuckers *Carpiodes carpio* were the second most abundant fish sampled with 1,141 sampled. Mini fyke nets caught the majority of river carpsuckers (n = 1,069), almost all of which were YOY. Trammel nets captured 54 adults and the otter trawl caught 18. River carpsuckers averaged 34 mm TL in mini fyke nets, 406 mm TL in otter trawls and 454 mm TL in trammel nets. Both adult and YOY river carpsuckers were sampled throughout the length of segment 3. The 2009 river carpsucker catch was up from 2008 when 820 were sampled.

Emerald shiners were the third most abundant fish sampled in 2009 with 1,028 caught in mini fyke nets and 15 in the otter trawl. The total catch of emerald shiners was less than half the 2008 catch of 2,754. Emerald shiners were found throughout the length of segment 3, with patchy abundance. Emerald shiners averaged 70.1 mm TL in 2009, larger than the 2008 average of 65.5 mm TL.

A total of 965 fathead chubs *Platygobio gracilis* were collected in segment 3 during 2009, an increase from 2008 when 450 were sampled. Flathead chubs were collected in all gears, although the otter trawl and mini fyke nets were the two most effective gears sampling 532 and 367, respectively. The otter trawl sampled on average larger flathead chubs (mean TL = 126 mm) than mini fyke nets (mean TL = 76 mm). Flathead chubs were sampled throughout the length of segment 3 with patchy abundance.

The abundance of white suckers in mini fyke nets increased in 2009 (n = 634) from 2008 (n = 220). Mini fyke nets captured all but seven of the total sampled in 2009. White suckers sampled in mini fyke nets averaged 52 mm TL. Adult white suckers that were sampled in trammel nets (n = 3) averaged 318 mm TL. Although white suckers were sampled throughout

the length of segment 3, the vast majority (n = 561) were sampled in one river bend at river mile 1695.

Common carp *Cyprinus carpio* were sampled throughout the length of segment 3, with a total of 568 sampled. The majority (97%) were young-of-the-year sampled in mini fyke nets. The remaining 3% of the total carp catch was divided between all other gears that were deployed. The total carp catch was more than double in 2009 when compared to 2008 (n = 274).

Goldeye *Hiodon alosoides* were relatively evenly distributed throughout segment 3 in 2009 with a total of 419 sampled. Trammel nets caught more goldeye (n = 294) than trotlines (n = 211) and the otter trawl (n = 14), while none were sampled using mini fyke nets. Goldeye averaged 296 mm TL with the smallest sample measuring 108 mm and the largest 404 mm. No young-of-the-year goldeye were sampled in 2009, whereas nine were sampled in 2008.

A total of 366 channel catfish *Ictalurus punctatus* were sampled during 2009, an increase from 272 sampled in 2009. Channel catfish were sampled in all gears except for mini fyke nets. Trotlines were the most effective gear in capturing channel catfish with a total of 196 sampled. For standard gears the otter trawl captured 107 and trammel nets 63. On average trotlines captured the largest catfish while the otter trawl sampled the smallest. Overall, channel catfish averaged 315 mm TL, with a minimum length of 121 mm and a maximum of 672 mm. The channel catfish catch was for the most part evenly distributed throughout the length of segment 3.

During 2009 a total of 364 shorthead redhorse *Moxostoma macrolepidotum* were sampled in segment 3. This was a substantial increase from 2008 when 74 were sampled. Of the 2009 total, 251 were sampled in mini fyke nets, 63 in otter trawls, 33 with trammel nets and 17 on trotlines. Mini fyke nets mainly sampled young-of-the-year shorthead redhorses that averaged 47 mm in length, whereas all other gears sampled adults.

Stonecats *Noturus flavus* were sampled throughout most the length of segment 3, with a total of 80 sampled. Trotlines were the most effective gear at sampling stonecats (n = 4), followed by the otter trawl (n = 30) and mini fyke nets (n = 6), while none were sampled using trammel nets.

Other species sampled that had a sample size of less than 50 included white crappie *Pomoxis annularis* (n = 38), longnose sucker *Catostomus catostomus* (n = 26), burbot *Lota lota* (n = 16), bigmouth buffalo *Ictiobus cyprinellus* (n = 16), smallmouth buffalo *I. Bubalus* (n = 16), walleye *Sander vitreus* (n = 13), northern pike *Esox lucius* (n = 9), lake whitefish *Coregonus*

clupeaformis (n = 7), green sunfish *Lepomis cyanellus* (n = 4), freshwater drum *Aplodinotus grunniens* (n = 4), longnose dace *Rhinichtys cataractae* (n = 2), pumpkinseed *Lepomis gibbosus* (n = 2), brook stickleback *Culaea inconstans* (n = 1) and spottail shiner *Notropis hudsonius* (n = 1).

Discussion

While the total catch of pallid sturgeon in segment 3 has increased over the past four years of sampling, CPUE data for both trammel nets and otter trawls have not. Conversely, overall trammel net CPUE was lower in 2009 than during 2006, while the overall otter trawl CPUE was lower than during 2007. The increase in the total number of pallid sturgeon sampled has mainly been attributed to the increase in effort of all gears and the implementation of trotlines.

Trotlines were a very effective gear in 2009 at catching both gross numbers of pallid sturgeon as well as sampling a variety of year classes. During a three day intensive trotline effort in the lower area of segment 3 (river miles 1587-1594) 96 trotlines were set, which consisted of 1,920 hooks. A total of 43 pallid sturgeon were captured on trotlines during this effort, which represented 9 different year classes originating from 9 different stocking locations from both the Missouri and Yellowstone Rivers. Due to the success of this effort, it will be expanded in 2010 to both gain more information that can be used in deriving survival estimates as well as attempting to quantify how far this "hot" zone of pallid sturgeon occupancy occurs.

Although pallid sturgeon have been captured throughout the length of segment 3 over the four years of sampling, it has become apparent that their densities are the greatest in the lower portions of the segment. From our data, we have observed that fish stocked upstream in segment 3 and 2 and fish stocked into the Yellowstone River are using the lower section of the segment 3. That coupled with the fact that all age classes have been found in this section lend evidence that this is an extremely important rearing area for pallid sturgeon. For the most part, as you go upstream a higher proportion of the catch is comprised of younger year classes of fish. Although we do not fully understand why this area is being chosen by pallid sturgeon over upstream areas, there are some likely candidates. First, this section of river is the most naturalized in terms of summer water temperatures and suspended sediment loads. Secondly, this section of river has greater abundance of many native minnow species such as sturgeon and sicklefin chubs when compared to upstream reaches. Lastly, due to the nutrient inputs from both tributaries as well as the uplands, this area may contain higher macro invertebrate abundance than the more nutrient poor areas upstream. A better understanding of the specific habitat attributes that are causing pallid sturgeon to choose this area over upstream areas should be a research priority.

The first wild pallid sturgeon sampled in four years of random sampling was captured during 2009 in a trammel net at rivermile 1625.5 on August 10th. The collection of this fish complies with radio telemetry data of wild pallid sturgeon in RPMA 2 that has shown that a small portion of the wild adult population do use the Missouri River above the confluence of the Yellowstone River during portions of the year.

Due to the large numbers of pallid sturgeon stocked into RPMA 2 over the past 12 years it is important to not only monitor pallid sturgeon, but other fishes that might either compete with or act as a prey source for pallid sturgeon. However, when monitoring the relative abundance of multiple species the results are often difficult to interpret. For instance, sturgeon chub catch using the otter trawl has decreased since 2006 to a low in 2009. On the contrary, sicklefin chub catch has remained relatively constant. Due to the small numbers sampled for both of these species it is too early to make any concrete conclusions on the overall relative abundance of either of these species. In addition, many of the native minnow species have large fluctuations in abundance from year to year and determining a trend may take several more years of sampling. For example, western silvery minnow abundance went up substantially from 2006 to 2008 and then was at a four year low in 2009. River discharge, water temperature, suspended sediment and overall dam operations might all be abiotic factors affecting the production of various species within segment 3. Additionally, predator abundance and completion with other small bodied fishes may also affect the abundance of these populations. More years of data should allow us to better understand how these variables affect year class strength of many of these small bodied fishes.

Acknowledgments

The U.S. Army Corps of Engineers provided funding for this project. We'd like to thank Tim Welker for stewardship of the Population Assessment Program. Bob Lipscomb and Landon Johnson assisted in both the field and shop throughout the year. Parker Bradley was an excellent intern. Thanks to Steve Dalbey for taking care of much needed business while we were on the river. We'd like to thank the entire Fort Peck Flow Modification Crew for their help in the field and office. Thanks to Pat Braaten of the U.S. Geological Survey for answering any type of question we may have pertaining to the Missouri River and its fishes. Thanks to Ryan Wilson, Zack Sandness, Everett Nelson and Steve Krentz of the U.S. Fish and Wildlife Service for all the collaboration between our offices.

References

- Dattilo, J. E., R. R. Dirnberger, P. T. Horner, D. J. Niswonger, M. L. Miller and V. H. Travinchek. 2008a. Three Year Summary Age and Growth Report For Sand Shiner (*Notropis stramineus*). Pallid Sturgeon Population Assessment Project and Associated Fish Community Monitoring for the Missouri River. Missouri Department of Conservation. Chillicothe, MO.
- Dattilo, J. E., R. R. Dirnberger, P. T. Horner, D. J. Niswonger, M. L. Miller and V. H. Travinchek. 2008b. Three Year Summary Age and Growth Report For Plains Minnow, Western Silvery Minnow, Brassy Minnow (*Hybognathus spp.*). Pallid Sturgeon Population Assessment Project and Associated Fish Community Monitoring for the Missouri River. Missouri Department of Conservation. Chillicothe, MO.
- Dattilo, J. E., R. R. Dirnberger, P. T. Horner, D. J. Niswonger, M. L. Miller and V. H. Travinchek. 2008c. Three Year Summary Age and Growth Report For Sauger (*Sander canadensis*). Pallid Sturgeon Population Assessment Project and Associated Fish Community Monitoring for the Missouri River. Missouri Department of Conservation. Chillicothe, MO.
- Galat, D.L., C.R. Berry Jr., E.J. Peters and R.G. White. 2005. Missouri River. Pages 427-480 in A.C. Benke and C.E. Cushing (editors). Rivers of North America, Elesevier, Oxford.
- Gardner, W.M. and P.A. Stewart. 1987. The Fishery of the Lower Missouri River. Federal Aid to Fish and Wildlife Restoration Project FW-2-R Job I-b. Montana Fish, Wildlife and Parks. Helena, Montana.
- Hadley, G. L. and J. J. Rotella. 2009. Upper Basin Pallid Sturgeon Survival Estimation Project. Final Report. February 25, 2009. Montana State University, Bozeman, MT.
- Herman, P., A Plauck, N. Utrup and Tracy Hill. 2008a. Three Year Summary Age and Growth Report For Sturgeon Chub *Macrohybopsis aestivalis*. Pallid Sturgeon Population Assessment Project and Associated Fish Community Monitoring for the Missouri River. United States Fish and Wildlife Service Columbia National Fish and Wildlife Conservation Office, Columbia, MO.
- Herman, P., A Plauck, N. Utrup and Tracy Hill. 2008b. Three Year Summary Age and Growth Report For Sicklefin Chub *Macrohybopsis meeki*. Pallid Sturgeon Population Assessment Project and Associated Fish Community Monitoring for the Missouri River. United States Fish and Wildlife Service Columbia National Fish and Wildlife Conservation Office, Columbia, MO.
- Labay, S., J. Kral and S. Stukel. 2008. Three Year Summary Age and Growth Report For Blue Sucker. Pallid Sturgeon Population Assessment Project and Associated Fish Community Monitoring for the Missouri River. South Dakota Department of Game, Fish and Parks. Yankton, SD.

- Pierce, C. L., C. S. Guy, P. J. Braaten, and M.A. Pegg. 2004. Fish growth, mortality, recruitment, condition, and size structure. Volume 4. Population structure and habitat use of benthic fishes along the Missouri and lower Yellowstone Rivers. U.S. Geological Survey, Cooperative Research Units, Iowa State University, Ames Iowa.
- Shuman, D. A. et al. 2009. Pallid Sturgeon Size Structure, Condition, and Growth within the Missouri River Basin. (In Review).
- Steffensen, K. and M. Hamel. 2008. Four Year Summary Age and Growth Report For Shovelnose Sturgeon. Pallid Sturgeon Population Assessment Project and Associated Fish Community Monitoring for the Missouri River. Nebraska Game and Parks Commission. Lincoln, NE.
- Welker, T. L., and M. R. Drobish. (editors), 2009. Missouri River Standard Operating Procedures for Fish Sampling and Data Collection, Volume 1.5. U.S. Army Corps of Engineers, Omaha District, Yankton, SD.

Appendix A. Phylogenetic list of Missouri River fishes with corresponding letter codes used in the long-term pallid sturgeon and associated fish community sampling program. The phylogeny follows that used by the American Fisheries Society, Common and Scientific Names of Fishes from the United States and Canada, 5th edition. Asterisks and bold type denote targeted native Missouri River species.

Scientific name	Common name	Letter Code
	S CEPHALASPIDOMORPHI-LAMPREYS	
	ORDER PETROMYZONTIFORMES	
	Petromyzontidae – lampreys	
Ichthyomyzon castaneus	Chestnut lamprey	CNLP
Ichthyomyzon fossor	Northern brook lamprey	NBLP
Ichthyomyzon unicuspis	Silver lamprey	SVLP
Ichthyomyzon gagei	Southern brook lamprey	SBLR
Petromyzontidae	Unidentified lamprey	ULY
Petromyzontidae larvae	Unidentified larval lamprey	LVLP
CLA	ASS OSTEICHTHYES – BONY FISHES ORDER ACIPENSERIFORMES	
	Acipenseridae – sturgeons	
Acipenser fulvescens	Lake sturgeon	LKSG
Scaphirhynchus spp.	Unidentified Scaphirhynchus	USG
Scaphirhynchus albus	Pallid sturgeon	PDSG*
Scaphirhynchus platorynchus	Shovelnose sturgeon	SNSG*
S. albus X S. platorynchus	Pallid-shovelnose hybrid	SNPD
	Polyodontidae – paddlefishes	
Polyodon spathula	Paddlefish	PDFH
	ORDER LEPISOSTEIFORMES	
	Lepisosteidae – gars	
Lepisosteus oculatus	Spotted gar	STGR
Lepisosteus osseus	Longnose gar	LNGR
Lepisosteus platostomus	Shortnose gar	SNGR
	ORDER AMMIFORMES	
	Amiidae – bowfins	
Amia calva	Bowfin	BWFN
	ORDER OSTEOGLOSSIFORMES	
	Hiodontidae – mooneyes	
Hiodon alosoides	Goldeye	GDEY
Hiodon tergisus	Mooneye	MNEY
	ORDER ANGUILLIFORMES	
	Anguillidae – freshwater eels	
Anguilla rostrata	American eel	AMEL
	ORDER CLUPEIFORMES	
	Clupeidae – herrings	
Alosa alabame	Alabama shad	ALSD
Alosa chrysochloris	Skipjack herring	SJHR
Alosa pseudoharengus	Alewife	ALWF
Dorosoma cepedianum	Gizzard shad	GZSD
Dorosoma petenense	Threadfin shad	TFSD

Scientific name	Common name	Lettter
		Code
D. cepedianum X D. petenense	Gizzard-threadfin shad hybrid	GSTS
	ORDER CYPRINIFORMES	
Су	prinidae – carps and minnows	
Campostoma anomalum	Central stoneroller	CLSR
Campostoma oligolepis	Largescale stoneroller	LSSR
Carassius auratus	Goldfish	GDFH
Carassus auratus X Cyprinius carpio	Goldfish-Common carp hybrid	GFCC
Couesius plumbens	Lake chub	LKCB
Ctenopharyngodon idella	Grass carp	GSCP
Cyprinella lutrensis	Red shiner	RDSN
Cyprinella spiloptera	Spotfin shiner	SFSN
Cyprinus carpio	Common carp	CARP
Erimystax x-punctatus	Gravel chub	GVCB
Hybognathus argyritis	Western slivery minnow	WSMN*
Hybognathus hankinsoni	Brassy minnow	BSMN
Hybognathus nuchalis	Mississippi silvery minnow	SVMW
Hybognathus placitus	Plains minnow	PNMW*
<i>Hybognathus</i> spp.	Unidentified Hybognathus	HBNS
Hypophthalmichthys molitrix	Silver carp	SVCP
Hypophthalmichthys nobilis	Bighead carp	BHCP
Luxilus chrysocephalus	Striped shiner	SPSN
Luxilus cornutus	Common shiner	CMSN
Luxilus zonatus	Bleeding shiner	BDSN
Lythrurus unbratilis	Western redfin shiner	WRFS
Macrhybopsis aestivalis	Speckled chub	SKCB*
Macrhybopsis gelida	Sturgeon chub	SGCB*
Macrhybopsis meeki	Sicklefin chub	SFCB*
Macrhybopsis storeriana	Silver chub	SVCB
M. aestivalis X M. gelida	Speckled-Sturgeon chub hybrid	SPST
M. gelida X M. meeki	Sturgeon-Sicklefin chub hybrid	SCSC
Macrhybopsis spp.	Unidentified chub	UHY
Margariscus margarita	Pearl dace	PLDC
Mylocheilus caurinus	Peamouth	PEMT
Nocomis biguttatus	Hornyhead chub	ННСВ
Notemigonus crysoleucas	Golden shiner	GDSN
Notropis atherinoides	Emerald shiner	ERSN
Notropis blennius	River shiner	RVSN
Notropis bionnus Notropis boops	Bigeye shiner	BESN
Notropis buchanani	Ghost shiner	GTSN
Notropis dorsalis	Bigmouth shiner	BMSN
Notropis greenei	Wedgespot shiner	WSSN
~	, , .	
Cy Notropis heterolepsis	prinidae – carps and minnows Blacknose shiner	BNSN
Notropis helerolepsis Notropis hudsonius	Spottail shiner	STSN
Notropis nuasonius Notropis nubilus	Ozark minnow	OZMW
Notropis nublius Notropis rubellus	Rosyface shiner	RYSN
Notropis rubettus Notropis shumardi	Silverband shiner	SBSN
Notropis stilbius	Silverstripe shiner	SSPS
Notropis stitutus Notropis stramineus	Silversuipe sinner Sand shiner	SSFS SNSN*
Notropis stramineus Notropis topeka	Topeka shiner	TPSN
INTITUTION ATTIC BAL		11.010

Scientific name	Common name	Letter
NI-4	Channel shiner	Code
Notropis wickliffi	Unidentified shiner	CNSN
Notropis spp.		UNO
Opsopoeodus emiliae Phenacobius mirabilis	Pugnose minnow Suckermouth minnow	PNMW
		SMMW
Phoxinus eos	Northern redbelly dace	NRBD
Phoxinus erythrogaster	Southern redbelly dace	SRBD
Phoxinus neogaeus	Finescale dace	FSDC
Pimephales notatus	Bluntnose minnow	BNMW
Pimephales promelas	Fathead minnow	FHMW
Pimephales vigilax	Bullhead minnow	BHMW
Platygobio gracilis	Flathead chub	FHCB
P. gracilis X M. meeki	Flathead-sicklefin chub hybrid	FCSC
Rhinichthys atratulus	Blacknose dace	BNDC
Rhinichthys cataractae	Longnose dace	LNDC
Richardsonius balteatus	Redside shiner	RDSS
Scardinius erythrophthalmus	Rudd	RUDD
Semotilus atromaculatus	Creek chub	CKCB
	Unidentified Cyprinidae	UCY
	Unidentified Asian Carp	UAC
	Catostomidae - suckers	
Carpiodes carpio	River carpsucker	RVCS
Carpiodes cyprinus	Quillback	QLBK
Carpiodes velifer	Highfin carpsucker	HFCS
Carpiodes spp.	Unidentified Carpiodes	UCS
Catostomus catostomus	Longnose sucker	LNSK
Catostomus commersonii	White sucker	WTSK
Catostomus platyrhynchus	Mountain sucker	MTSK
Catostomus spp.	Unidentified Catostomus spp.	UCA
Cycleptus elongatus	Blue sucker	BUSK*
Hypentelium nigricans	Northern hog sucker	NHSK
Ictiobus bubalus	Smallmouth buffalo	SMBF
Ictiobus cyprinellus	Bigmouth buffalo	BMBF
Ictiobus niger	Black buffalo	BKBF
Ictiobus spp.	Unidentified buffalo	UBF
Minytrema melanops	Spotted sucker	SPSK
Moxostoma anisurum	Silver redhorse	SVRH
Moxostoma carinatum	River redhorse	RVRH
Moxostoma duquesnei	Black redhorse	BKRH
Moxostoma erythrurum	Golden redhorse	GDRH
Moxostoma macrolepidotum	Shorthead redhorse	SHRH
Moxostoma spp.	Unidentified redhorse	URH
Catostomidae - suckers	Unidentified Catostomidae	UCT
	ORDER SILURIFORMES	
	Ictaluridae – bullhead catfishes	
Ameiurus melas	Black bullhead	ВКВН
Ameiurus natalis	Yellow bullhead	YLBH
Ameiurus nebulosus	Brown bullhead	BRBH
Ameiurus spp.	Unidentified bullhead	UBH
Ictalurus furcatus	Blue catfish	BLCF

Scientific name	Common name	Letter
		Code
Ictalurus punctatus	Channel catfish	CNCF
I. furcatus X I. punctatus	Blue-channel catfish hybrid	BCCC
Ictalurus spp.	Unidentified Ictalurus spp.	UCF
Noturus exilis	Slender madtom	SDMT
Noturus flavus	Stonecat	STCT
Noturus gyrinus	Tadpole madtom	TPMT
Noturus nocturnus	Freckled madtom	FKMT
Pylodictis olivaris	Flathead catfish	FHCF
	ORDER SALMONIFORMES	
	Esocidae - pikes	CODY
Esox americanus vermiculatus	Grass pickerel	GSPK
Esox lucius	Northern pike	NTPK
Esox masquinongy	Muskellunge	MSKG
E. lucius X E. masquinongy	Tiger Muskellunge	TGMG
	Umbridae - mudminnows	
Umbra limi	Central mudminnow	MDMN
	Osmeridae - smelts	
Osmerus mordax	Rainbow smelt	RBST
	Salmonidae - trouts	
Coregonus artedi	Lake herring or cisco	CSCO
Coregonus clupeaformis	Lake whitefish	LKWF
Oncorhynchus aguabonita	Golden trout	GDTT
Oncorhynchus clarkii	Cutthroat trout	CTTT
Oncorhynchus kisutch	Coho salmon	CHSM
Oncorhynchus mykiss	Rainbow trout	RBTT
Oncorhynchus nerka	Sockeye salmon	SESM
Oncorhynchus tshawytscha	Chinook salmon	CNSM
Prosopium cylindraceum	Bonneville cisco	BVSC
Prosopium williamsoni	Mountain whitefish	MTWF
Salmo trutta	Brown trout	BNTT
Salvelinus fontinalis	Brook trout	BKTT
Salvelinus namaycush	Lake trout	LKTT
Thymallus arcticus	Arctic grayling	AMGL
	ORDER PERCOPSIFORMES	
	Percopsidae – trout-perches	
Percopsis omiscomaycus	Trout-perch	TTPH
	ORDER GADIFORMES	
	Gadidae - cods	
Lota lota	Burbot	BRBT
	ORDER ATHERINIFORMES	
	Cyprinodontidae - killifishes	
Fundulus catenatus	Northern studfish	NTSF
Fundulus diaphanus	Banded killifish	BDKF
Fundulus notatus	Blackstripe topminnow	BSTM
Fundulus olivaceus	Blackspotted topminnow	BPTM
Fundulus sciadicus	Plains topminnow	PTMW

Scientific name	Common name	Letter Code
Fundulus zebrinus	Plains killifish	PKLF
	Poeciliidae - livebearers	
Gambusia affinis	Western mosquitofish	MQTF
	Atherinidae - silversides	
Labidesthes sicculus	Brook silverside	BKSS
	ORDER GASTEROSTEIFORMES	
	Gasterosteidae - sticklebacks	
Culaea inconstans	Brook stickleback	BKSB
	ORDER SCORPAENIFORMES	
	Cottidae - sculpins	
Cottus bairdi	Mottled sculpin	MDSP
Cottus carolinae	Banded sculpin	BDSP
	ORDER PERCIFORMES	
	Percichthyidae – temperate basses	
Morone Americana	White perch	WTPH
Morone chrysops	White bass	WTBS
Morone mississippiensis	Yellow bass	YWBS
Morone saxatilis	Striped bass	SDBS
M. saxatilis X M. chrysops	Striped-white bass hybrid	SBWB
	Centrarchidae - sunfishes	
Ambloplites rupestris	Rock bass	RKBS
Archoplites interruptus	Sacramento perch	SOPH
Lepomis cyanellus	Green sunfish	GNSF
Lepomis gibbosus	Pumpkinseed	PNSD
Lepomis gulosus	Warmouth	WRMH
Lepomis humilis	Orangespotted sunfish	OSSF
Lepomis macrochirus	Bluegill	BLGL
Lepomis megalotis	Longear sunfish	LESF
Lepomis microlophus	Redear sunfish	RESF
L. cyanellus X L. macrochirus	Green sunfish-bluegill hybrid	GSBG
	Centrarchidae - sunfishes	
L. cyanellus X L. humilis	Green-orangespotted sunfish hybrid	GSOS
L. macrochirus X L. microlophus	Bluegill-redear sunfish hybrid	BGRE
Lepomis spp.	Unidentified Lepomis	ULP
Micropterus dolomieu	Smallmouth bass	SMBS
Micropterus punctulatus	Spotted sunfish	STBS
Micropterus salmoides	Largemouth bass	LMBS
Micropterus spp.	Unidentified Micropterus spp.	UMC
Pomoxis annularis	White crappie	WTCP
Pomoxis nigromaculatus	Black crappie	BKCP
Pomoxis spp.	Unidentified crappie	UCP
P. annularis X P. nigromaculatus	White-black crappie hybrid	WCBC
Centrarchidae	Unidentified Centrarchidae	UCN
,	Percidae - perches	
Ammocrypta asprella	Crystal darter	CLDR

Scientific name	Common name	Letter		
		Code		
Etheostoma blennioides	Greenside darter	GSDR		
Etheostoma caeruleum	Rainbow darter	RBDR		
Etheostoma exile	Iowa darter	IODR		
Etheostoma flabellare	Fantail darter	FTDR		
Etheostoma gracile	Slough darter	SLDR		
Etheostoma microperca	Least darter	LTDR		
Etheostoma nigrum	Johnny darter	JYDR		
Etheostoma punctulatum	Stippled darter	STPD		
Etheostoma spectabile	Orange throated darter	OTDR		
Etheostoma tetrazonum	Missouri saddled darter	MSDR		
Etheostoma zonale	Banded darter	BDDR		
<i>Etheostoma</i> spp.	Unidentified Etheostoma spp.	UET		
Perca flavescens	Yellow perch	YWPH		
Percina caprodes	Logperch	LGPH		
Percina cymatotaenia	Bluestripe darter	BTDR		
Percina evides	Gilt darter	GLDR		
Percina maculata	Blackside darter	BSDR		
Percina phoxocephala	Slenderhead darter	SHDR		
Percina shumardi	River darter	RRDR		
Percina spp.	Unidentified Percina spp.	UPN		
reremu spp.	Unidentified darter	UDR		
Sander canadense	Sauger	SGER*		
Sander vitreus	Walleye	WLEY		
Sanaer viireus S. canadense X S. vitreus	Sauger-walleye hybrid/Saugeye	SGWE		
	Unidentified <i>Sander</i> (formerly <i>Stizostedion</i>) spp.			
Sander spp.	Unidentified Percidae	UST UPC		
	Undentified Percidae	UPC		
	Sciaenidae - drums			
Aplodinotus grunniens	Freshwater drum	FWDM		
	NON-TAXONOMIC CATEGORIES			
	Age-0/Young-of-year fish	YOYF		
	No fish caught	NFSH		
	Unidentified larval fish	LVFS		
	Unidentified	UNID		
	Net Malfunction (Did Not Fish)	NDNF		
	Turtles			
Chelydra serpentine	Common Snapping Turtle	SNPT		
Chrysemys picta bellii	Western Painted Turtle	PATT		
Emydoidea blandingii	Blanding's Turtle	BLDT		
Graptemys pseudogeographica	False Map Turtle	FSMT		
Trachemys scripta	Red-Eared Slider Turtle	REST		
Apalone mutica	Smooth Softshell Turtle	SMST		
Apalone spinifera	Spiny Softshell Turtle	SYST		
Terrapene ornata ornata	Ornate Box Turtle	ORBT		
Sternotherus odoratus	Stinkpot Turtle	SPOT		
	-	MAPT		
Graptemys geographica	Map Turtle Mississinni Man Turtle			
Graptemys kohnii	Mississippi Map Turtle	MRMT		
Graptemys ouachitensis	Ouachita Map Turtle	OUMT		
Pseudemys concinna metteri	Missouri River Cooter Turtle	MRCT		
Terrapene carolina triunguis	Three-toed Box Turtle	TTBT		

Appendix B. Definitions and codes used to classify standard Missouri River habitats in the long-term pallid sturgeon and associated fish community sampling program. Three habitat scales were used in the hierarchical habitat classification system: Macrohabitats, Mesohabitats, and Microhabitats.

Habitat	Scale	Definition	Code
Braided channel	Macro	An area of the river that contains multiple smaller channels and is lacking a readily identifiable main channel (typically associated with unchannelized sections)	BRAD
Main channel cross over	Macro	The inflection point of the thalweg where the thalweg crosses from one concave side of the river to the other concave side of the river, (i.e., transition zone from one-bend to the next bend). The upstream CHXO for a respective bend is the one sampled.	СНХО
Tributary confluence	Macro	Area immediately downstream, extending up to one bend in length, from a junction of a large tributary and the main river where this tributary has influence on the physical features of the main river	CONF
Dendritic	Macro	An area of the river where the river transitions from meandering or braided channel to more of a treelike pattern with multiple channels (typically associated with unchannelized sections)	DEND
Deranged	Macro	An area of the river where the river transitions from a series of multiple channels into a meandering or braided channel (typically associated with unchannelized sections)	DRNG
Main channel inside bend	Macro	The convex side of a river bend	ISB
Main channel outside bend	Macro	The concave side of a river bend	OSB
Secondary channel-connected large	Macro	A side channel, open on upstream and downstream ends, with less flow than the main channel, large indicates this habitat can be sampled with trammel nets and trawls based on width and/or depths > 1.2 m	SCCL
Secondary channel-connected small	Macro	A side channel, open on upstream and downstream ends, with less flow than the main channel, small indicates this habitat cannot be sampled with trammel nets and trawls based on width and/or on depths < 1.2 m	SCCS
Secondary channel-non-connected	Macro	A side channel that is blocked at one end	SCCN
Tributary	Macro	Any river or stream flowing in the Missouri River	TRIB
Tributary large mouth	Macro	Mouth of entering tributary whose mean annual discharge is $> 20 \text{ m}^3/\text{s}$, and the sample area extends 300 m into the tributary	TRML
Tributary small mouth	Macro	Mouth of entering tributary whose mean annual discharge is $< 20 \text{ m}^3/\text{s}$, mouth width is $> 6 \text{ m}$ wide and the sample area extends 300 m into the tributary	TRMS
Wild	Macro	All habitats not covered in the previous habitat descriptions	WILD
Bars	Meso	Sandbar or shallow bank-line areas with depth < 1.2 m	BARS
Pools	Meso	Areas immediately downstream from sandbars, dikes, snags, or other obstructions with a formed scour hole > 1.2 m	POOL
Channel border	Meso	Area in the channelized river between the toe and the thalweg, area in the unchannelized river between the toe and the maximum depth	CHNB
Thalweg	Meso	Main channel between the channel borders conveying the majority of the flow	TLWG
Island tip	Meso	Area immediately downstream of a bar or island where two channels converge with water depths > 1.2 m	ITIP

Appendix C. List of standard and wild gears (type), their corresponding codes in the database,
seasons deployed, years used, and catch per unit effort units for collection of Missouri River fishes
in Segment 3 for the long-term pallid sturgeon and associated fish community sampling program.
Long-term monitoring began in 2006 for Segment 3.

Gear	Code	Туре	Season	Years	CPUE units
Gillnet – 4 meshes, small mesh set upstream	GN14	Standard	Sturgeon	Not Used	fish/net night
Gillnet – 4 meshes, large mesh set upstream	GN41	Standard	Sturgeon	Not Used	fish/net night
Gillnet – 8 meshes, small mesh set upstream	GN18	Standard	Sturgeon	Not Used	fish/net night
Gillnet – 8 meshes, large mesh set upstream	GN81	Standard	Sturgeon	Not Used	fish/net night
Mini-fyke net	MF	Standard	Fish Comm.	2006 - 2009	fish/net night
Push Trawl – 8 ft 4mm x 4mm	POT02	Wild	Fish Comm.	2007	fish/ m trawled
Trammel net – 1 inch inner mesh	TN	Standard	All	2006 - 2009	fish/100 r drift
Trot Line – Circle hooks*	TLC_	Wild	Sturgeon	Not Used	fish/hook night
Trot Line – Octopus hooks*	TLO_	Wild	Sturgeon	2007 - 2009	fish/hook night
Trot Line – O'Shaughnessy hooks*	TLS_	Wild	Sturgeon	Not Used	fish/hook night
Otter trawl – 16 ft head rope	OT16	Standard	All	2006 - 2009	fish/100 r trawled
Otter trawl – 16 ft SKT 4mm x 4mm HB2 MOR	OT01	Wild	Fish Comm.	Not Used	fish/100 r trawled
Beam trawl – 6.4 ft width, 1/8 inch inner mesh	BT	Wild	All	2006	Fish/100 trawled

State(s)	RPMA	Site Name	Code	River	R.M.
MT	2	Forsyth	FOR	Yellowstone	253.2
MT	2	Cartersville	CAR	Yellowstone	235.3
MT	2	Miles City	MIC	Yellowstone	181.8
MT	2	Fallon	FAL	Yellowstone	124.0
MT	2	Intake	INT	Yellowstone	70.0
MT	2	Sidney	SID	Yellowstone	31.0
MT	2	Big Sky Bend	BSB	Yellowstone	17.0
ND	2	Fairview	FRV	Yellowstone	9.0
MT	2	Milk River	MLK	Milk	11.5
MT	2	Mouth of Milk	MOM	Missouri	1761.5
MT	2	Grand Champs	GRC	Missouri	1741.0
MT	2	Wolf Point	WFP	Missouri	1701.5
MT	2	Poplar	POP	Missouri	1649.5
MT	2	Brockton	BRK	Missouri	1678.0
MT	2	Culbertson	CBS	Missouri	1621.0
MT	2	Nohly Bridge	NOB	Missouri	1590.0
ND	2	Confluence	CON	Missouri	1581.5
SD/NE	3	Sunshine Bottom	SUN	Missouri	866.2
SD/NE	3	Verdel Boat Ramp	VER	Missouri	855.0
SD/NE	3	Standing Bear Bridge	STB	Missouri	845.0
SD/NE	3	Running Water	RNW	Missouri	840.1
SD/NE	4	St. Helena	STH	Missouri	799.0
SD/NE	4	Mullberry Bend	MUL	Missouri	775.0
NE/IA	4	Ponca State Park	PSP	Missouri	753.0
NE/IA	4	Sioux City	SIO	Missouri	732.6
NE/IA	4	Sloan	SLN	Missouri	709.0
NE/IA	4	Decatur	DCT	Missouri	691.0
NE/IA	4	Boyer Chute	BYC	Missouri	637.4
NE/IA	4	Bellevue	BEL	Missouri	601.4
NE/IA	4	Rulo	RLO	Missouri	497.9
MO/KS	4	Kansas River	KSR	Missouri	367.5
NE	4	Platte River	PLR	Platte	5.0
KS/MO	4	Leavenworth	LVW	Missouri	397.0
МО	4	Parkville	PKV	Missouri	377.5
MO	4	Kansas City	KAC	Missouri	342.0
MO	4	Miami	MIA	Missouri	262.8
MO	4	Grand River	GDR	Missouri	250.0
MO	4	Boonville	BOO	Missouri	195.1
MO	4	Overton	OVT	Missouri	185.1
MO	4	Hartsburg	HAR	Missouri	160.0
MO	4	Jefferson City	JEF	Missouri	143.9
MO	4	Mokane	MOK	Missouri	124.7
MO	4	Hermann	HER	Missouri	97.6
MO	4	Washington	WAS	Missouri	68.5
MO	4	St. Charles	STC	Missouri	28.5

Appendix D. Stocking locations and codes for pallid sturgeon by Recovery Priority Management Area (RPMA) in the Missouri River Basin.

1998 Big Sky Bend 255 1997 8/11/1998 Yearling PIT Tag Elastom 1998 Confluence 40 1997 8/11/1998 Yearling PIT Tag Elastom 1998 Nohly Bridge 255 1997 8/11/1998 Yearling PIT Tag Elastom 1998 Sidney 230 1997 8/11/1998 Yearling PIT Tag Elastom 2000 Culbertson 34 1998 10/11/2000 2 yr Old PIT Tag Elastom 2000 Fairview 66 1998 10/11/2000 2 yr Old PIT Tag Elastom 2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag Elastom 2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag Elastom 2000 Volf Point 90 1999 10/17/2000 Yearling CWT Elastom 2001 Culbertson 270 2001 7/18	Year	Stocking Site	Number Stocked	Year Class	Stock Date	Age at Stocking ^a	Primary Mark	Secondary Mark
1998 Confluence 40 1997 8/11/1998 Yearling PIT Tag Elastom 1998 Nohly Bridge 255 1997 8/11/1998 Yearling PIT Tag Elastom 1998 Sidney 230 1997 8/11/1998 Yearling PIT Tag Elastom 2000 Culbertson 34 1998 10/11/2000 2 yr Old PIT Tag Elastom 2000 Fairview 66 1998 10/11/2000 2 yr Old PIT Tag 2000 2000 Sidney 66 1998 10/11/2000 2 yr Old PIT Tag 2000 2000 Volf Point 34 1998 10/11/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag Elastom 2000 Kolrey 149 1999 10/17/2000 Yearling CWT Elastom		6				<u> </u>	ě	•
1998 Nohly Bridge 255 1997 8/11/1998 Yearling PTT Tag Elastom 1998 Sidney 230 1997 8/11/1998 Yearling PIT Tag Elastom 2000 Culbertson 34 1998 10/11/2000 2 yr Old PIT Tag Elastom 2000 Fairview 66 1998 10/11/2000 2 yr Old PIT Tag 2000 2000 Wolf Point 34 1998 10/11/2000 2 yr Old PIT Tag 2000 2000 Volf Point 34 1998 10/11/2000 2 yr Old PIT Tag 2000 2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling CWT Elastom 2000 Wolf Point 90 1999 10/17/2000 Yearling CWT Elastom 2002 Culbertson 270 2001 7/18/2002 Yearling CWT		<i>e</i> .				e	e	
1998 Sidney 230 1997 8/11/1998 Yearling PIT Tag Elastom 2000 Culbertson 34 1998 10/11/2000 2 yr Old PIT Tag Elastom 2000 Fairview 66 1998 10/11/2000 2 yr Old PIT Tag 2000 2000 Sidney 66 1998 10/11/2000 2 yr Old PIT Tag 2000 2000 Wolf Point 34 1998 10/17/2000 Yearling PIT Tag 2000 2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag 2000 2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling CWT Elastom 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Fairview 270 2001 7/18/2002 Yearling PIT Tag <t< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td></td></t<>						•	•	
2000 Culbertson 34 1998 10/11/2000 2 yr Old PIT Tag 2000 Fairview 66 1998 10/11/2000 2 yr Old PIT Tag 2000 Sidney 66 1998 10/11/2000 2 yr Old PIT Tag 2000 Woll Point 34 1998 10/11/2000 2 yr Old PIT Tag 2000 Culbertson 89 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling CWT Elastom 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001						e	•	
2000 Fairview 66 1998 10/11/2000 2 yr Old PIT Tag 2000 Sidney 66 1998 10/11/2000 2 yr Old PIT Tag 2000 Wolf Point 34 1998 10/11/2000 2 yr Old PIT Tag 2000 Culbertson 89 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag 2000 Wolf Point 90 1999 10/17/2000 Yearling PIT Tag 2000 Wolf Point 90 1999 10/17/2000 Yearling CWT Elastom 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling PIT Tag 2002 Sidney 317 2001						e	•	Liastonici
2000 Sidney 66 1998 10/11/2000 2 yr Old PIT Tag 2000 Wolf Point 34 1998 10/11/2000 2 yr Old PIT Tag 2000 Culbertson 89 1999 10/17/2000 Yearling PIT Tag 2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag 2000 Wolf Point 90 1999 10/17/2000 Yearling PIT Tag 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling PIT Tag 2002 Koltrison 317 2001 7/26/2002 Yearling PIT Tag 2002 Koltrison 317 2001 7/26/2						•	e	
2000 Wolf Point 34 1998 10/11/2000 2 yr Old PIT Tag 2000 Culbertson 89 1999 10/17/2000 Yearling PIT Tag 2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag 2000 Wolf Point 90 1999 10/17/2000 Yearling PIT Tag 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/26/2002 Yearling PIT Tag 2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001						-	e	
2000 Culbertson 89 1999 10/17/2000 Yearling PIT Tag 2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag 2000 Wolf Point 90 1999 10/17/2000 Yearling PIT Tag 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Fairview 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling PIT Tag 2002 Wolf Point 269 2001 7/18/2002 Yearling PIT Tag 2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td>		•				•	•	
2000 Fairview 150 1999 10/17/2000 Yearling PIT Tag 2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag 2000 Wolf Point 90 1999 10/17/2000 Yearling PIT Tag 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Fairview 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/26/2002 Yearling PIT Tag 2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427						•	e	
2000 Sidney 149 1999 10/17/2000 Yearling PIT Tag 2000 Wolf Point 90 1999 10/17/2000 Yearling PIT Tag 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Fairview 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 317 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Intake 15						e	e	
2000 Wolf Point 90 1999 10/17/2000 Yearling PIT Tag 2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Fairview 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling PIT Tag 2002 Wolf Point 269 2001 7/18/2002 Yearling PIT Tag 2002 Elaivew 360 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 7/26/2002 Yearling PIT Tag 2002 Kidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Intake 155 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>e</td><td>e</td><td></td></t<>						e	e	
2002 Culbertson 270 2001 7/18/2002 Yearling CWT Elastom 2002 Fairview 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Wolf Point 269 2001 7/18/2002 Yearling CWT Elastom 2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Molf Point 425 2001 7/26/2002 Yearling PIT Tag 2003 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>e</td><td>e</td><td></td></t<>						e	e	
2002 Fairview 270 2001 7/18/2002 Yearling CWT Elastom 2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Wolf Point 269 2001 7/18/2002 Yearling CWT Elastom 2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 Fairview 360 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Wolf Point 425 2001 7/26/2002 Yearling PIT Tag 2002 Intake 155 2001 9/18/2002 Yearling PIT Tag Elastom 2003 Fairview						e	e	Flastomor
2002 Intake 199 2001 7/18/2002 Yearling CWT Elastom 2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Wolf Point 269 2001 7/18/2002 Yearling CWT Elastom 2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 Fairview 360 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Molf Point 425 2001 7/26/2002 Yearling PIT Tag 2003 Culbertson 1033 2002 8/7/2003 Yearling PIT Tag Elastom 2003 Intake 1040						e		
2002 Sidney 271 2001 7/18/2002 Yearling CWT Elastom 2002 Wolf Point 269 2001 7/18/2002 Yearling CWT Elastom 2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 2002 Fairview 360 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 425 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 425 2001 7/26/2002 Yearling PIT Tag Elastom 2002 Intake 1033 2002 8/7/2003 Yearling PIT Tag Elastom 2003<						e		
2002 Wolf Point 269 2001 7/18/2002 Yearling CWT Elastom 2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 2002 Fairview 360 2001 7/26/2002 Yearling PIT Tag 2002 Fairview 360 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Wolf Point 425 2001 7/26/2002 Yearling PIT Tag 2002 Wolf Point 425 2001 7/26/2002 Yearling PIT Tag 2003 2002 Intake 155 2001 9/18/2002 Yearling PIT Tag Elastom 2003 Culbertson 1033 2002 8/7/2003 Yearling PIT Tag Elastom 2003 Intake 1040 2002 8/7/2003 Yearling PIT Tag Elastom <td></td> <td></td> <td></td> <td></td> <td></td> <td>e</td> <td></td> <td></td>						e		
2002 Culbertson 317 2001 7/26/2002 Yearling PIT Tag 2002 Fairview 360 2001 7/26/2002 Yearling PIT Tag 2002 Intake 97 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Sidney 427 2001 7/26/2002 Yearling PIT Tag 2002 Wolf Point 425 2001 7/26/2002 Yearling PIT Tag 2002 Intake 155 2001 7/26/2002 Yearling PIT Tag 2003 Culbertson 1033 2002 8/7/2003 Yearling PIT Tag Elastom 2003 Fairview 887 2002 8/7/2003 Yearling PIT Tag Elastom 2003 Intake 1040 2002 8/7/2003 Yearling PIT Tag Elastom 2003 Wolf Point 926 2002 8/7/2003 Yearling PIT Tag Elastom 2004		•				•		
2002Fairview36020017/26/2002YearlingPIT Tag2002Intake9720017/26/2002YearlingPIT Tag2002Sidney42720017/26/2002YearlingPIT Tag2002Wolf Point42520017/26/2002YearlingPIT Tag2002Intake15520019/18/2002YearlingPIT Tag2003Culbertson103320028/7/2003YearlingPIT TagElastom2003Fairview88720028/7/2003YearlingPIT TagElastom2003Intake104020028/7/2003YearlingPIT TagElastom2003Wolf Point92620028/7/2003YearlingPIT TagElastom2004Milk River82120034/13/2004YearlingPIT TagElastom2004Lubertson52320038/9/2004YearlingPIT TagElastom2004Intake34720038/9/2004YearlingPIT TagElastom						e		Elastomer
2002Intake9720017/26/2002YearlingPIT Tag2002Sidney42720017/26/2002YearlingPIT Tag2002Wolf Point42520017/26/2002YearlingPIT Tag2002Intake15520019/18/2002YearlingPIT Tag2003Culbertson103320028/7/2003YearlingPIT TagElastome2003Fairview88720028/7/2003YearlingPIT TagElastome2003Intake104020028/7/2003YearlingPIT TagElastome2003Wolf Point92620028/7/2003YearlingPIT TagElastome2004Milk River82120034/13/2004YearlingPIT TagElastome2004Intake34720038/9/2004YearlingPIT TagElastome						•	•	
2002Sidney42720017/26/2002YearlingPIT Tag2002Wolf Point42520017/26/2002YearlingPIT Tag2002Intake15520019/18/2002YearlingPIT Tag2003Culbertson103320028/7/2003YearlingPIT Tag2003Fairview88720028/7/2003YearlingPIT TagElastom2003Intake104020028/7/2003YearlingPIT TagElastom2003Wolf Point92620028/7/2003YearlingPIT TagElastom2004Milk River82120034/13/2004YearlingPIT TagElastom2004Culbertson52320038/9/2004YearlingPIT TagElastom2004Intake34720038/9/2004YearlingPIT TagElastom						•	•	
2002Wolf Point42520017/26/2002YearlingPIT Tag2002Intake15520019/18/2002YearlingPIT Tag2003Culbertson103320028/7/2003YearlingPIT TagElastom2003Fairview88720028/7/2003YearlingPIT TagElastom2003Intake104020028/7/2003YearlingPIT TagElastom2003Wolf Point92620028/7/2003YearlingPIT TagElastom2004Milk River82120034/13/2004YearlingElastomer2004Culbertson52320038/9/2004YearlingPIT TagElastom2004Intake34720038/9/2004YearlingPIT TagElastom						e	•	
2002Intake15520019/18/2002YearlingPIT Tag2003Culbertson103320028/7/2003YearlingPIT TagElastome2003Fairview88720028/7/2003YearlingPIT TagElastome2003Intake104020028/7/2003YearlingPIT TagElastome2003Wolf Point92620028/7/2003YearlingPIT TagElastome2004Milk River82120034/13/2004YearlingElastomeElastome2004Culbertson52320038/9/2004YearlingPIT TagElastome2004Intake34720038/9/2004YearlingPIT TagElastome		•				e	e	
2003Culbertson103320028/7/2003YearlingPIT TagElastom2003Fairview88720028/7/2003YearlingPIT TagElastom2003Intake104020028/7/2003YearlingPIT TagElastom2003Wolf Point92620028/7/2003YearlingPIT TagElastom2004Milk River82120034/13/2004YearlingElastomer2004Culbertson52320038/9/2004YearlingPIT TagElastom2004Intake34720038/9/2004YearlingPIT TagElastom						e	e	
2003Fairview88720028/7/2003YearlingPIT TagElastom2003Intake104020028/7/2003YearlingPIT TagElastom2003Wolf Point92620028/7/2003YearlingPIT TagElastom2004Milk River82120034/13/2004YearlingElastomer2004Culbertson52320038/9/2004YearlingPIT TagElastom2004Intake34720038/9/2004YearlingPIT TagElastom						e	e	
2003Intake104020028/7/2003YearlingPIT TagElastome2003Wolf Point92620028/7/2003YearlingPIT TagElastome2004Milk River82120034/13/2004YearlingElastome2004Culbertson52320038/9/2004YearlingPIT TagElastome2004Intake34720038/9/2004YearlingPIT TagElastome							e	
2003Wolf Point92620028/7/2003YearlingPIT TagElastome2004Milk River82120034/13/2004YearlingElastomerElastomer2004Culbertson52320038/9/2004YearlingPIT TagElastomer2004Intake34720038/9/2004YearlingPIT TagElastomer						e	•	
2004Milk River82120034/13/2004YearlingElastomer2004Culbertson52320038/9/2004YearlingPIT TagElastomer2004Intake34720038/9/2004YearlingPIT TagElastomer						e	e	
2004Culbertson52320038/9/2004YearlingPIT TagElastom2004Intake34720038/9/2004YearlingPIT TagElastome						e	-	Liastonici
2004Intake34720038/9/2004YearlingPIT TagElasome						e		Flastomer
						e	•	
2004 Sidney 307 2003 8/0/2004 Veerling DIT Tea Electory	2004	Sidney	347 397	2003 2003	8/9/2004	Yearling	PIT Tag	Elastomer

Appendix E. Juvenile and adult pallid sturgeon stocking summary for Segment 3 of the Missouri River (RPMA 2)

• 7	G 11 G	Number	Year	0.15			a
Year 2004	Stocking Site Wolf Point	Stocked 379	Class 2003	Stock Date 8/9/2004	Age at Stocking ^a Yearling	Primary Mark	Secondary Mark Elastomer
	Wolf Point Larval Drift				e	PIT Tag	Elastomer
2004		30000	2004	7/2/2004	Fry		
2004	Larval Drift	50000	2004	7/8/2004	Fry		
2004	Larval Drift	25000	2004	7/20/2004	Fry		
2004	Larval Drift	25000	2004	7/23/2004	Fry		
2004	Larval Drift	25000	2004	7/27/2004	Fry		
2004	Culbertson	3819	2004	9/10/2004	Fingerling	CWT	Elastomer
2004	Sidney	2991	2004	9/10/2004	Fingerling	CWT	Elastomer
2004	Wolf Point	4040	2004	9/10/2004	Fingerling	CWT	Elastomer
2004	Mouth of Milk	3482	2004	10/15/2004	Advanced Fingerling	CWT	Elastomer
2004	Intake	2477	2004	11/18/2004	Advanced Fingerling	CWT	Elastomer
2005	Culbertson	288	2004	4/12/2005	Yearling	CWT	Elastomer
2005	Intake	309	2004	4/12/2005	Yearling	CWT	Elastomer
2005	Wolf Point	271	2004	4/12/2005	Yearling	CWT	Elastomer
2005	Intake	175	2004	8/19/2005	Yearling	PIT Tag	Elastomer
2005	Brockton	229	2005	10/5/2005	Advanced Fingerling	CWT	Elastomer
2005	Culbertson	226	2005	10/5/2005	Advanced Fingerling	CWT	Elastomer
2005	Intake	456	2005	10/5/2005	Advanced Fingerling	CWT	Elastomer
2005	Milk River	232	2005	10/5/2005	Advanced Fingerling	CWT	Elastomer
2005	Sidney	122	2005	10/5/2005	Advanced Fingerling	CWT	Elastomer
2005	Wolf Point	611	2005	10/12/2005	Advanced Fingerling	CWT	Elastomer
2005	Brockton	371	2005	10/13/2005	Advanced fingerling		
2005	Culbertson	1736	2005	10/13/2005	Advanced Fingerling	CWT	Elastomer
2005	Culbertson	182	2005	10/13/2005	Advanced Fingerling		
2005	Intake	313	2005	10/13/2005	Advanced Fingerling		
2005	Milk River	845	2005	10/13/2005	Advanced Fingerling	CWT	Elastomer
2005	Mouth of Milk	371	2005	10/13/2005	Advanced Fingerling		
2005	Sidney	105	2005	10/13/2005	Advanced Fingerling		
2005	Wolf Point	1521	2005	10/13/2005	Advanced Fingerling	CWT	Elastomer
2005	Wolf Point	371	2005	10/13/2005	Advanced Fingerling		
2005	Culbertson	651	2005	10/19/2005	Advanced Fingerling	CWT	Elastomer
2005	Intake	2120	2005	10/19/2005	Advanced Fingerling	CWT	Elastomer
2005	Milk River	485	2005	10/19/2005	Advanced Fingerling	CWT	Elastomer

V	Q 1 ' Q'.	Number	Year				01 1/1
Year 2005	Stocking Site Sidney	Stocked 882	Class 2005	Stock Date 10/19/2005	Age at Stocking ^a Advanced Fingerling	Primary Mark CWT	Secondary Mark Elastomer
2005	Wolf Point	650	2003 2005	10/19/2005	Advanced Fingerling	CWT	Elastomer
2005	Culbertson	235	2003 2005	3/28/2006	Advanced Fingerling	Elastomer	Liastomer
2006	Intake	327	2003 2005	3/28/2006	Advanced Fingerling	Elastomer	
2006	Mouth of Milk	134	2003 2005	3/28/2006	• •	Elastomer	
					Advanced fingerling Advanced Fingerling		
2006	Sidney Walf Daint	113	2005	3/28/2006	6 6	Elastomer	
2006	Wolf Point	232	2005	3/28/2006	Advanced Fingerling	Elastomer	
2006	Intake	970	2005	4/3/2006	Yearling	PIT Tag	Elastomer
2006	Sidney	314	2005	4/3/2006	Yearling	PIT Tag	Elastomer
2006	Culbertson	844	2005	4/5/2006	Yearling	PIT Tag	Elastomer
2006	Mouth of Milk	1007	2005	4/5/2006	Yearling	PIT Tag	Elastomer
2006	Wolf Point	866	2005	4/5/2006	Yearling	PIT Tag	Elastomer
2006	Culbertson	669	2005	5/1/2006	Yearling	PIT Tag	Scute Removed
2006	Intake	765	2005	5/1/2006	Yearling	PIT Tag	Scute Removed
2006	Mouth of Milk	650	2005	5/1/2006	Yearling	PIT Tag	Scute Removed
2006	Sidney	228	2005	5/1/2006	Yearling	PIT Tag	Scute Removed
2006	Wolf Point	653	2005	5/1/2006	Yearling	PIT Tag	Scute Removed
2006		1355	2005	5/1/2006	Yearling	PIT Tag	Scute Removed
2006	Culbertson	1544	2006	10/24/2006	Advanced Fingerling	Elastomer	
2006	Intake	1680	2006	10/24/2006	Advanced Fingerling	Elastomer	
2006	Mouth Milk	1117	2006	10/24/2006	Advanced Fingerling	Elastomer	
2006	Sidney	586	2006	10/24/2006	Advanced Fingerling	Elastomer	
2006	Wolf Point	1553	2006	10/24/2006	Advanced Fingerling	Elastomer	
2006	School Trust	436	2006	11/8/2006	Advanced Fingerling	Elastomer	
2007	Culbertson	651	2006	4/5/2007	Yearling	PIT Tag	Scute Removed
2007	Fallon	491	2006	4/3/2007	Yearling	PIT Tag	Scute Removed
2007	Forsyth	492	2006	4/3/2007	Yearling	PIT Tag	Scute Removed
2007	Sidney	983	2006	4/3/2007	Yearling	PIT Tag	Scute Removed
2007	School Trust	639	2006	4/5/2007	Yearling	PIT Tag	Scute Removed
2007	Wolf Point	651	2006	4/5/2007	Yearling	PIT Tag	Scute Removed
2007	Wolf Point	428285	2007	7/9/2007	Fry		
2007	Grand Champs	5558	2007	7/13/2007	Fry		
2007	Miles City	13125	2007	7/18/2007	Fry		

Vac	Stocking Site	Number Stocked	Year Class	Stock Date	A go at Stading ^a	Drimory Moul-	Secondam Maria
Year 2007	Stocking Site Intake	20763	2007	8/9/2007	Age at Stocking ^a Fry	Primary Mark	Secondary Mark
2007	Miles City	13675	2007	8/9/2007	Fry		
2007	Intake	336	2007	8/27/2007	Fingerling		
2007	Miles City	336	2007	8/27/2007	Fingerling		
2007	Wolf Point	672	2007	8/27/2007	Fingerling		
2007	Forsyth	690	2007	8/31/2007	Fingerling	CWT	
2007	Intake	615	2007	8/31/2007	Fingerling	CWT	
2007	School Trust	1160	2007	9/6/2007	Fingerling	CWT	
2007	Intake	293	2007	9/12/2007	Fingerling		
2007	Miles City	293	2007	9/12/2007	Fingerling		
2007	Wolf Point	586	2007	9/12/2007	Fingerling		
2007	Culbertson	6455	2007	9/14/2007	Fingerling	Elastomer	
2007	Fallon	4827	2007	9/14/2007	Fingerling	Elastomer	
2007	Forsyth	5370	2007	9/14/2007	Fingerling	Elastomer	
2007	Intake	7812	2007	9/14/2007	Fingerling	Elastomer	
2007	School Trust	6096	2007	9/14/2007	Fingerling	Elastomer	
2007	Sidney	1934	2007	9/14/2007	Fingerling	Elastomer	
2007	Wolf Point	6455	2007	9/14/2007	Fingerling	Elastomer	
2008	Culbertson	1384	2007	5/7/2008	Yearling	PIT Tag	Scute Removed
2008	Culbertson	643	2007	3/26/2008	Yearling	Elastomer	
2008	Fallon	1307	2007	5/7/2008	Yearling	PIT Tag	Scute Removed
2008	Forsyth	1384	2007	5/7/2008	Yearling	PIT Tag	Scute Removed
2008	Forsyth	106	2007	3/26/2008	Yearling	Elastomer	
2008	Intake	2395	2007	5/7/2008	Yearling	PIT Tag	Scute Removed
2008	Intake	103	2007	3/26/2008	Yearling	Elastomer	
2008	School Trust	1325	2007	5/7/2008	Yearling	PIT Tag	Scute Removed
2008	School Trust	654	2007	3/26/2008	Yearling	Elastomer	
2008	Sidney	149	2007	5/7/2008	Yearling	PIT Tag	Scute Removed
2008	Sidney	67	2007	3/26/2008	Yearling	Elastomer	
2008	Wolf Point	1328	2007	5/7/2008	Yearling	PIT Tag	Scute Removed
2008	Wolf Point	416	2007	3/26/2008	Yearling	Elastomer	
2008	Miles City	4797	2008	7/30/2008	Fry		
2008	Grand Champs	24395	2008	7/30/2008	Fry		

Year	Stocking Site	Number Stocked	Year Class	Stock Date	Age at Stocking ^a	Primary Mark	Secondary Mark
2008	Culbertson	15630	2008	9/24/2008	Fingerling	Elastomer	*
2008	Fallon	7930	2008	9/29/2008	Fingerling	Elastomer	
2008	Forsyth	7723	2008	9/29/2008	Fingerling	Elastomer	
2008	Intake	12642	2008	9/29/2008	Fingerling	Elastomer	
2008	Sidney	3186	2008	9/29/2008	Fingerling	Elastomer	
2008	Wolf Point	11717	2008	9/24/2008	Fingerling	Elastomer	
2009	Culbertson	1387	2008	4/13/2009	Yearling	PIT Tag	Scute Removed
2009	Fallon	1155	2008	4/13/2009	Yearling	PIT Tag	Scute Removed
2009	Forsyth	1166	2008	4/13/2009	Yearling	PIT Tag	Scute Removed
2009	Intake	2181	2008	4/13/2009	Yearling	PIT Tag	Scute Removed
2009	Sidney	710	2008	4/13/2009	Yearling	PIT Tag	Scute Removed
2009	Wolf Point	2162	2008	4/13/2009	Yearling	PIT Tag	Scute Removed
2009	Miles City	46260	2009	7/31/2009	Fry		
2009	Wolf Point	26175	2009	7/22/2009	Fry		
2009	Culbertson	10238	2009	9/24/2009	Fingerling	Elastomer	
2009	Fallon	5133	2009	9/23/2009	Fingerling	Elastomer	
2009	Forsyth	5386	2009	9/23/2009	Fingerling	Elastomer	
2009	Intake	8374	2009	9/23/2009	Fingerling	Elastomer	
2009	Sidney	1865	2009	9/23/2009	Fingerling	Elastomer	
2009	Wolf Point	9946	2009	9/23/2009	Fingerling	Elastomer	

^aAge of fish when stocked: Fry, Fingerling, Yearling, 1yo, 2yo, 3yo, etc...

Appendix F

Total catch, overall mean catch per unit effort (± 2 SE), and mean CPUE (fish/100 m) by Mesohabitat within a Macrohabitat for all species caught with each gear type during sturgeon season and fish community season for Segment 3 of the Missouri River during 2009. Species captured are listed alphabetically and their codes are presented in Appendix A. Asterisks with bold type indicate targeted native Missouri River species and habitat abbreviations are presented in Appendix B. Standard Error was not calculated when N < 2.

	Total	Overall	CH	XO	CO	NF	15	SB	(OSB	SCO	CL	SCCS	TRML
Species	Catch	CPUE	CHNB	POOL	CHNB	POOL	CHNB	POOL	CHNB	POOL	CHNB	ITIP	ITIP	TLWG
DVCD	0	0	0				0		0		0			
BKSB		0	0				0		0		0			
DMDE	4	0.005	0.008				0.004		0.003		0			
BMBF		0.005	0.011				0.009		0.006		0			
דתתת	2	0.003	0.005				0.003		0		0			
BRBT		0.004	0.01				0.006		0		0			
DUCIZ	18	0.024	0.018				0.021		0.037		0			
BUSK*		0.013	0.015				0.023		0.033		0			
CADD	2	0.002	0.006				0		0		0			
CARP		0.004	0.012				0		0		0			
CNICE	45	0.062	0.068				0.073		0.031		0.151			
CNCF		0.025	0.049				0.05		0.026		0.164			
EDGN	0	0	0				0		0		0			
ERSN		0	0				0		0		0			
FUCD	14	0.018	0.015				0.019		0.015		0.052			
FHCB		0.01	0.015				0.022		0.015		0.071			
	0	0	0				0		0		0			
FHMW		0	0				0		0		0			
CDEV	219	0.298	0.274				0.367		0.252		0.262			
GDEY		0.07	0.105				0.143		0.121		0.182			
CNICE	0	0	0				0		0		0			
GNSF		0	0				0		0		0			
	0	0	0				0		0		0			
HBNS*		0	0				0		0		0			
	4	0.004	0.006				0		0.004		0.024			
LKWF		0.004	0.008				0		0.008		0.048			
LNDG	0	0	0				0		0		0			
LNDC		0	0				0		0		0			
	1	0.002	0				0.006		0		0			
LNSK		0.004	0				0.012		0		0			

Appendix F2. 1.0" trammel net: overall season and segment summary. Lists CPUE (fish/100 m) and 2 standard errors on second line.

	Total	Overall	CH	XO	CO	NF	IS	SB	(OSB	SCO	CL	SCCS	TRML
Species	Catch	CPUE	CHNB	POOL	CHNB	POOL	CHNB	POOL	CHNB	POOL	CHNB	ITIP	ITIP	TLWG
	0	0	0				0		0		0			
NFSH		0	0				0		0		0			
NTDIZ	2	0.003	0.01				0		0		0			
NTPK		0.005	0.015				0		0		0			
DDCC*	23	0.028	0.048				0.016		0.021		0.024			
PDSG*		0.012	0.025				0.018		0.019		0.048			
PNSD	0	0	0				0		0		0			
rnsD		0	0				0		0		0			
RVCS	42	0.06	0.071				0.054		0.041		0.156			
RVC5		0.023	0.042				0.036		0.034		0.265			
SFCB*	0	0	0				0		0		0			
SPCD		0	0				0		0		0			
SGCB*	0	0	0				0		0		0			
SUCD		0	0				0		0		0			
SGER*	122	0.174	0.179				0.116		0.24		0.102			
JULK		0.055	0.063				0.053		0.154		0.09			
SHRH	23	0.035	0.035				0.036		0.024		0.125			
SIIMI		0.019	0.031				0.032		0.027		0.251			
SMBF	8	0.013	0.003				0.025		0.007		0.041			
SINDI		0.011	0.006				0.029		0.011		0.082			
SNSG*	127	0.167	0.201				0.194		0.108		0.133			
		0.043	0.085				0.085		0.05		0.182			
SNSN*	0	0	0				0		0		0			
51 (51 (0	0				0		0		0			
STCT	0	0	0				0		0		0			
5101		0	0				0		0		0			
STSN	0	0	0				0		0		0			
2.2.1		0	0				0		0		0			
UCA	0	0	0				0		0		0			
2011		0	0				0		0		0			
UCY	0	0	0				0		0		0			
		0	0				0		0		0			

	Total	Overall	CHXC)	CON	١F	IS	В	(OSB	SCO	CL	SCCS	TRML
Species	Catch	CPUE	CHNB P	POOL CH	NB	POOL	CHNB	POOL	CHNB	POOL	CHNB	ITIP	ITIP	TLWG
	0	0	0				0		0		0			
UNID		0	0				0		0		0			
WLYE	1	0.001	0				0.003		0		0			
WLIE		0.002	0				0.006		0		0			
WSMW*	0	0	0				0		0		0			
		0	0				0		0		0			
WTCP	1	0.001	0.003				0		0		0			
WICF		0.002	0.006				0		0		0			
WTCV	1	0.001	0				0		0.004		0			
WTSK		0.003	0				0		0.009		0			

	Total	Overall	CH	XO	CO	NF	IS	B	OS	SB	SCO	CL	SCCS	TRML
Species	Catch	CPUE	CHNB	POO L	CHNB	POOL	CHNB	POOL	CHNB	POOL	CHNB	ITIP	ITIP	TLWG
BKSB	0	0	0				0		0		0			
DV2D		0	0				0		0		0			
DMDE	0	0	0				0		0		0			
BMBF		0	0				0		0		0			
BRBT	5	0.005	0.003				0.007		0.003		0.013			
DKDI		0.005	0.006				0.01		0.007		0.026			
BUSK*	0	0	0				0		0		0			
DUSK.		0	0				0		0		0			
CARP	2	0.002	0.003				0		0.003		0			
CARI		0.003	0.006				0		0.007		0			
CNCF	76	0.09	0.068				0.096		0.09		0.155			
chei		0.028	0.037				0.053		0.052		0.155			
ERSN	7	0.008	0.005				0.014		0.003		0.013			
LINDIN		0.008	0.011				0.019		0.007		0.026			
FHCB	363	0.379	0.439				0.408		0.142		0.89			
THED		0.134	0.312				0.189		0.074		0.815			
FHMW	0	0	0				0		0		0			
1 11101 00		0	0				0		0		0			
GDEY	10	0.01	0.003				0.013		0.012		0.026			
ODET		0.009	0.006				0.013		0.024		0.051			
GNSF	0	0	0				0		0		0			
GNSI		0	0				0		0		0			
HBNS*	0	0	0				0		0		0			
HDING.		0	0				0		0		0			
LKWF	0	0	0				0		0		0			
LKWF		0	0				0		0		0			
LNDC	0	0	0				0		0		0			
LNDC		0	0				0		0		0			
INCV	0	0	0				0		0		0			
LNSK		0	0				0		0		0			
NFSH	0	0	0				0		0		0			
игоп		0	0				0		0		0			
NTPK	0	0	0				0		0		0			
INTER		0	0				0		0		0			
PDSG*	35	0.039	0.051				0.047		0.022		0.015			
LD2Q.		0.015	0.034				0.026		0.02		0.031			
PNSD	0	0	0				0		0		0			
LINOD		0	0				0		0		0			

Appendix F3. Otter trawl: overall season and segment summary. Lists CPUE (fish/100 m) and 2 standard errors on second line.

	Total	Overall	CH	XO	CO	NF	IS	SB	OS	SB	SCO	CL	SCCS	TRML
Species	Catch	CPUE	CHNB	POO L	CHNB	POOL	CHNB	POOL	CHNB	POOL	CHNB	ITIP	ITIP	TLWG
DUCC	15	0.022	0.006				0.014		0.03		0.098			
RVCS		0.015	0.008				0.02		0.032		0.12			
CECD*	85	0.092	0.126				0.082		0.075		0.051			
SFCB*		0.031	0.07				0.05		0.045		0.08			
GGGD*	187	0.2	0.218				0.161		0.233		0.169			
SGCB*		0.054	0.097				0.084		0.117		0.15			
COED*	44	0.049	0.045				0.036		0.042		0.154			
SGER*		0.021	0.028				0.026		0.041		0.182			
	39	0.047	0.036				0.032		0.056		0.127			
SHRH		0.025	0.056				0.028		0.047		0.114			
	0	0	0				0		0		0			
SMBF	0	0 0	0				0		ů 0		0			
	49	0.064	0.075				0.046		0.07		0.072			
SNSG*		0.028	0.073				0.029		0.041		0.097			
	0	0.020	0.075				0.029		0.041		0.077			
SNSN*	U	0	ů 0				ů 0		ů 0		0			
	14	0.018	0.003				0.016		0.029		0.051			
STCT	11	0.013	0.006				0.010		0.029		0.076			
	0	0.015	0.000				0.027		0.024		0.070			
STSN	0	0	0				0		0		0			
	0	0	0				0		0		0			
UCA	0	0	0				0		0		0			
	0	0	0				0		0		0			
UCY	0	0	0				0		0		0			
	0	0	0				0		0		0			
UNID	0	0	0				0		0		0			
	6	0.006	0.009				0.011		0		0			
WLYE	0	0.000	0.009				0.011		0		0			
	1								0					
WSMW*	1	0.001	0				0		U		0.013			
	0	0.002	0				0		0		0.026			
WTCP	0	0.001	0				0		0.003		0			
	~	0.002	0				0		0.007		0			
WTSK	0	0	0				0		0		0			
		0	0				0		0		0			

	Total	Overall	СН	XO	CC	NF	IS	SB	05	SB	SCO	Ľ	SCCS	TRMS
Species	Catch	CPUE	BARS	POOL	CHNB	POOL	BARS	POOL	BARS	POOL	BARS	ITIP	BARS	BARS
BKSB	1	0.006	0				0		0		0		0.027	0
DK3D		0.011	0				0		0		0		0.054	0
BMBF	9	0.052	0.02				0.018		0		0		0.162	0.5
DWDI		0.041	0.039				0.036		0		0		0.165	1
BRBT	4	0.023	0.039				0.036		0		0		0	0
DKDT		0.023	0.055				0.05		0		0		0	0
BUSK*	0	0	0				0		0		0		0	0
DUSK		0	0				0		0		0		0	0
CARP	549	3.155	1.255				0.5		0		0.682		9.514	25.5
CAR		2.825	0.706				0.342		0		0.463		12.874	45
CNCF	0	0	0				0		0		0		0	0
chei		0	0				0		0		0		0	0
ERSN	1028	5.908	10.843				3.732		0		6.318		3.351	0
LINDIN		3.659	11.77				2.428		0		6.191		2.094	0
FHCB	367	2.109	1.667				1.214		2.5		0.682		5.243	0
THED		2.075	1.308				0.764		3		0.381		9.548	0
FHMW	1621	9.316	1.353				3.429		0		0.682		34.73	1
1 11101 00		9.41	0.643				2.793		0		0.609		43.424	2
GDEY	0	0	0				0		0		0		0	0
GDET		0	0				0		0		0		0	0
GNSF	4	0.023	0.039				0.018		0		0.045		0	0
GIUDI		0.023	0.055				0.036		0		0.091		0	0
HBNS*	6	0.034	0				0.071		0		0.045		0.027	0
IIDIG		0.049	0				0.143		0		0.091		0.054	0
LKWF	0	0	0				0		0		0		0	0
		0	0				0		0		0		0	0
LNDC	2	0.011	0.02				0		0		0		0.027	0
LIDC		0.016	0.039				0		0		0		0.054	0
LNSK	24	0.138	0.039				0.036		0		0.045		0.514	0
LIGI		0.165	0.055				0.05		0		0.091		0.762	0
NFSH	0	0	0				0		0		0		0	0
111 011		0	0				0		0		0		0	0
NTPK	2	0.011	0				0		0		0.045		0	0
		0.016	0				0		0		0.091		0	0
PDSG*	0	0	0				0		0		0		0	0
- 200		0	0				0		0		0		0	0

Appendix F4. Mini-fyke net: overall season and segment summary. Lists CPUE (fish/net night) and 2 standard errors on second line.

	Total	Overall	CH	XO	CC	DNF	IS	B	OS	B	SCO	CL	SCCS	TRMS
Species	Catch	CPUE	BARS	POOL	CHNB	POOL	BARS	POOL	BARS	POOL	BARS	ITIP	BARS	BARS
DVGD	2	0.011	0				0		0		0		0.054	0
PNSD		0.016	0				0		0		0		0.075	0
RVCS	1069	6.144	1.961				3.679		0.5		2.364		15.757	8
RVCS		3.131	1.145				2.988		1		2.266		12.761	16
SFCB*	0	0	0				0		0		0		0	0
SFCD		0	0				0		0		0		0	0
SGCB*	0	0	0				0		0		0		0	0
SGCD		0	0				0		0		0		0	0
SGER*	14	0.08	0.059				0.071		0		0.091		0.054	0
SUEK		0.05	0.087				0.086		0		0.182		0.075	0
SHRH	251	1.443	0.667				0.911		0		0.227		4.243	1
SIIKII		1.054	0.657				0.973		0		0.261		4.575	2
SMBF	3	0.017	0.02				0		0		0		0.054	0
SMDI		0.026	0.039				0		0		0		0.108	0
SNSG*	0	0	0				0		0		0		0	0
5115G.		0	0				0		0		0		0	0
SNSN*	819	4.707	6.588				3.643		1.5		2.273		5.892	1
9195N .		1.687	4.097				2.889		3		2.483		3.013	2
STST	6	0.034	0.078				0.036		0		0		0	0
5151		0.032	0.094				0.05		0		0		0	0
STSN	1	0.006	0				0		0		0.045		0	0
5151		0.011	0				0		0		0.091		0	0
UCA	7	0.04	0.039				0.054		0		0.091		0	0
UCA		0.047	0.078				0.107		0		0.182		0	0
UCY	1	0.006	0				0		0		0		0.027	0
UCI		0.011	0				0		0		0		0.054	0
UNID	3	0.017	0				0.054		0		0		0	0
UNID		0.034	0				0.107		0		0		0	0
WI VE	0	0	0				0		0		0		0	0
WLYE		0	0				0		0		0		0	0
	14	0.08	0.059				0.107		0		0.182		0.027	0
WSMW*		0.047	0.067				0.098		0		0.214		0.054	0
WTOD	36	0.207	0.039				0.054		0		0.091		0.595	1.5
WTCP		0.162	0.055				0.079		0		0.182		0.704	1
WTOX	634	3.644	0.294				0.357		0		0.682		15.405	0.5
WTSK		4.557	0.252				0.276		0		0.749		21.185	1

Appendix G. Hatchery names, locations and abbreviations.

Hatchery	State	Abbreviation
Blind Pony State Fish Hatchery	МО	BYP
Neosho National Fish Hatchery	МО	NEO
Gavins Point National Fish Hatchery	SD	GAV
Garrison Dam National Fish Hatchery	ND	GAR
Miles City State Fish Hatchery	MT	MCH
Blue Water State Fish Hatchery	MT	BLU
Bozeman Fish Technology Center	MT	BFT
Fort Peck State Fish Hatchery	MT	FPH

	Sturgeon	Season	Fig	Fish Community Season			
Species Code	Otter Trawl	1.0" Trammel Net	Otter Trawl	1.0" Trammel Net	Mini-Fyke Net		
BKSB	0	0	0	0	0.006		
BMBF	0	0.002	0	0.008	0.052		
BRBT	0.007	0.006	0.004	0	0.023		
BUSK*	0	0.004	0	0.044	0		
CARP	0.002	0	0.002	0.004	3.155		
CNCF	0.096	0.078	0.084	0.045	0		
ERSN	0	0	0.017	0	5.908		
FHCB	0.081	0.017	0.677	0.019	2.109		
FHMW	0	0	0	0	9.316		
FWDM	0	0	0	0	0		
GDEY	0	0.254	0.021	0.341	0		
GNSF	0	0	0	0	0.023		
HBNS*	0	0	0	0	0.034		
LKWF	0	0	0	0.008	0		
LNDC	0	0	0	0	0.011		
LNSK	0	0	0	0.004	0.138		
NFSH	0	0	0	0	0		
NTPK	0	0.003	0	0.004	0.011		
PDSG*	0.028	0.016	0.05	0.04	0		
PNSD	0	0	0	0	0.011		
RVCS	0.022	0.084	0.022	0.035	6.144		
SFCB*	0.031	0	0.153	0	0		
SGCB*	0.123	0	0.277	0	0		
SGER*	0.021	0.237	0.077	0.111	0.08		
SHRH	0.019	0.031	0.075	0.039	1.443		
SMBF	0	0.013	0	0.013	0.017		
SNSG*	0.05	0.122	0.077	0.212	0		
SNSN*	0	0	0	0	4.707		
STCT	0.023	0	0.014	0	0.034		
STSN	0	0	0	0	0.006		
UCA	0	0	0	0	0.04		
UCY	0	0	0	0	0.006		
UNID	0	0	0	0	0.017		

Appendix H. Alphabetic list of Missouri River fishes with total catch per unit effort by gear type for the sturgeon season and the fish community season during 2009 for Segment 3 of the Missouri River. Species codes are located in Appendix A. Asterisks and bold type denote targeted native Missouri River species.

-	Sturgeon	Season	Fish Community Season			
Species Code	Otter Trawl	1.0" Trammel Net	Otter Trawl	1.0" Trammel Net	Mini-Fyke Net	
WLYE	0.004	0	0.009	0.002	0	
WSMW*	0	0	0.002	0	0.08	
WTCP	0	0	0.002	0.002	0.207	
WTSK	0	0.003	0	0	3.644	

Appendix I. Comprehensive list of bend numbers and bend river miles for Segment 2 of the Missouri River comparing bend selection for both sturgeon season (ST) and fish community season (FCS) between years from 2006 - 2009.

Bend	Bend River	Coordinates* Latitude					
Number	Mile		itude	2006	2007	2008	2009
1	1701.5						
2	1700						
3	1698.5						
4	1697.5						
5	1696						
6	1695	48.0895	105.439		ST, FC		ST, FC
7	1693.5						
8	1692	48.0913	105.373		ST, FC	ST, FC	
9	1690.5	40.000			~~ ~~		
10	1689	48.0824	105.324		ST, FC		
11	1687.5					CT	
12	1685.5	48.0887	105.253			ST, FC	
13	1684.5	48.0912	105.248		ST, FC		ST, FC
14	1683	48.0852	105.225	ST, FC			ST, FC
15	1681.5						ST, FC
16	1680	48.0664	105.2	ST, FC			
17	1678.5	48.0902	105.184		ST, FC		
18	1677	48.1027	105.174		ST, FC		
19	1675.5	48.0932	105.171			ST, FC	
20	1674	48.0769	105.164			ST, FC	
21	1672.5						
22	1671						
23	1670						
24	1668.5						
25	1667						ST, FC
26	1666	48.0656	105.05			ST, FC	ST, FC

Bend Number	Bend River	Coordinates* Latitude		2006	2007	2008	2009
27	1665		<u> </u>				
28	1664						ST, FC
29	1663						10
30	1661.5						
50	1001.5						ST,
31	1660						FC
32	1659	48.0687	104.999	ST, FC			
33	1657	48.0953	104.981	ST, FC			
34	1656						ST, FC
						ST,	ST,
35	1655	48.1006	104.965			FC	FC
36	1654					am	
37	1653	48.0952	104.94		ST, FC	ST, FC	
38	1651	48.1281	104.924		ST, FC	ST, FC	
39	1650						
40	1648.5	48.1488	104.898		ST, FC		ST, FC
41	1647						
42	1646						ST, FC
43	1644.5						ST, FC
44	1643						ST, FC
45	1641.5						
46	1640.5						ST, FC
47	1639.5	48.113	104.735		ST, FC	ST, FC	
48	1638.5	48.1191	104.716		ST, FC	ST, FC	
49	1637.5						
50	1636.5	48.104	104.682	ST, FC			
51	1635.5						
52	1634.5	48.1072	104.659		ST, FC		
53	1633.5	48.1119	104.634			ST, FC	ST, FC

Bend Number	Bend River	Coordinates* Latitude		2006	2007	2008	2009
54	1632.5		<u> </u>	2000	2007	2000	2007
51	1052.5						ST,
55	1631.5						FC
56	1630.5	48.1398	104.605	ST, FC			
						ST,	
57	1629.5	48.1403	104.604			FC	
58	1628.5						
59	1627						
<i>c</i> 0	1 < 2 5 5	40.1100	104 5 67				ST,
60	1625.5	48.1182	104.567		ST, FC		FC
61	1624	10 111 6	104 51				
62	1623	48.1116	104.51	ST, FC			
63	1622					0TT	
64	1620.5	48.1233	104.472		ST, FC	ST, FC	
65	1619.5	40.1233	104.472		51,10	TC.	
0.5	1019.5						ST,
66	1618.5						FC
						ST,	
67	1617.5	48.0966	104.444		ST, FC	FC	
68	1616.5	48.0813	104.415	ST, FC			
69	1615	48.0764	104.393		ST, FC		
						ST,	
70	1613.5	48.0746	104.371			FC	
71	1612					~~	
72	1611	19 0461	104 227			ST, FC	
72	1611	48.0461	104.327			FC	
73	1610					ST,	ST,
74	1608.5	48.0483	104.283		ST, FC	FC	FC
	10000		10.1200		~ - , - 0	ST,	
75	1606.5	48.035	104.251	ST, FC		FC	
							ST,
76	1604.5	48.0357	104.207	ST, FC			FC
77	1602	10 0 4 4 6	104 100			ST,	
77	1603	48.0446	104.199			FC ST,	
78	1598.5	48.046	104.184	ST, FC		FC	
,,,,	1070.0	10.010	10.1101	~1,10		ST,	
79	1597.5	48.0362	104.175			FC	
80	1596						ST,

Bend	Bend	Coord	inates*				
Number	River	Latitude		2006	2007	2008	2009
							FC
						ST,	
81	1595	48.0532	104.141		ST, FC	FC	
82	1594	48.0378	104.124		ST, FC		
						ST,	
83	1593	48.0296	104.103		FC	FC	
84	1592						
						ST,	
85	1591	48.021	104.098			FC	
86	1590.5	48.0202	104.1		ST, FC		
87	1589.5	48.0052	104.102		ST, FC		
88	1588.5						
89	1587						
90	1585.5						
91	1583.5						