MONTANA DEPARTMENT OF FISH, WILDLIFE AND PARKS

FISHERIES DIVISION JOB PROGRESS REPORT

STATE: MONTANA PROJECT TITLE: STATEWIDE FISHERIES INVESTIGATIONS

PROJECT NO.: <u>F-78-R-6</u> STUDY TITLE: <u>SURVEY AND INVENTORY OF WARMWATER</u>

LAKES

JOB NO.: IV-C JOB TITLE: FORT PECK RESERVOIR STUDY

PROJECT PERIOD: JULY 1, 2017 THROUGH JUNE 30, 2018

REPORT PERIOD: MARCH 1, 2017 THROUGH FEBRUARY 29, 2018

ABSTRACT

Fort Peck Reservoir reached peak elevation on June 28th, 2017 at 2240.25 mean feet above sea level (MSL) from a minimum elevation on January 28th, 2017 at 2233.86 MSL, an increase of 6.39 feet. Spawning walleye populations were sampled in the upper Big Dry Arm with modified fyke nets from April 5th to April 23rd, 2017. Walleye eggs were collected and the fertilized eggs were sent to Fort Peck and Miles City fish hatcheries. Trap netting captured 2,261 walleye for a catch rate of 8.2 per net night in 2017 which was up from the previous year of 6.3 per net night. Due to favorable spawning conditions, 81 million walleye eggs were collected in 2017. A total of 30.2 million fry and 1.9 million walleye fingerlings were stocked in various locations throughout Fort Peck Reservoir. One hundred gill nets were set in standard locations throughout the reservoir from July 18th to August 9th, 2017. Walleye, common carp, and goldeye were the most abundant species captured overall, with catch rates of 3.1, 2.2, and 1.9 per net night, respectively. Relative abundance of walleye in 2017 was down slightly from the previous year at 3.1 per net night and slightly below the long-term average of 3.8 per net for the period from (1984 to 2017. Gill-netted walleye averaged 17.0 inches and 2.2 pounds. In 2017, relative abundance decreased for quality-size walleye while catch rates for all other length groups remained similar. Relative weights of walleye for stock and quality size groups remained similar while preferred and memorable size groups decreased in 2017. Northern pike relative abundance in 2017 decreased slightly to 1.8 per net night which is at the long-term average of 1.8 per net night for the period of 1984 to 2017. Average size of gill-netted northern pike in 2017 was 26.0 inches and 4.4 pounds. Overall, relative abundance of shoreline forage increased to 161.8 per haul in 2017 and was near the long-term average of 159.8 per haul from 1984 to 2017. Relative abundance of spottail shiners showed the largest increase in 2017 at 87.7 per seine haul. A total of 345,386 chinook salmon were stocked at the Fort Peck Marina, Duck Creek, and Milk Coulee in May and June of 2017 at an average size of 37 fish/pound. Young-of-year cisco relative abundance increased to 120.3 per net night in 2017 which was above the long-term average of 80 per net night for the period of 1986 to 2017.

OBJECTIVES AND DEGREE OF ATTAINMENT

Activity 1 - Survey and Inventory

Objective: To survey and monitor the characteristics and trends of fish populations and to assess habitat conditions in Fort Peck Reservoir. This objective was met and is presented in the Results and Discussion section of this report.

Activity 2 - Fish Population Management

Objective: To implement fish stocking programs to maintain fish populations at levels consistent with habitat conditions and other limiting factors. This objective was met and results are presented in Results and Discussion of this report.

Activity 3 - Technical Guidance

Objective: To review projects by government agencies and private parties that have the potential to affect fisheries resources, provide technical advice or decisions to mitigate effects on these resources, and provide landowners and other private parties with technical advice and information to sustain and enhance fisheries resources. This objective was met by evaluating the impact of reservoir water levels on the fishery and was presented to North and South Dakota fisheries personnel during annual Missouri River mainstem reservoir meetings. This information was also presented to Corps of Engineers to make recommendations for Annual Operating Plan (AOP). Objectives of the Fort Peck Reservoir Fisheries Management Plan (FPRFMP) are presented in the Results and Discussion of this report. The FPRFMP will guide fisheries management activities on Fort Peck Reservoir for a ten-year period (2012-2022). Objective accomplished.

Activity 4 - Aquatic Education

Objective: To enhance the public's understanding, awareness and support of the state's fishery and aquatic resources and to assist young people to develop angling skills and to appreciate the aquatic environment. Ninety-five volunteers assisted with the annual walleye egg-taking operation in the upper Big Dry Arm of Fort Peck Reservoir. Reservoir staff assisted with kids fishing clinics and as science fair judges. Staff also assisted the regional information and education officer with multiple press releases, interviews on the Montana Outdoor Radio Show, and fisheries information for the R6 Facebook page. Staff attended Walleyes Unlimited meetings in Billings to present annual updates on the status of the Fort Peck Reservoir fishery. Staff also presented presentations and updates to Region 6 CAC members. Objective accomplished.

STUDY AREA

Fort Peck Reservoir is a large earth-filled dam on the Missouri River located in northeastern Montana. Figure 1 depicts major roads around Fort Peck Reservoir, select locations and 5 sampling regions the reservoir is divided into: upper Big Dry Arm (UBD), lower Big Dry Arm (LBD), lower Missouri Arm (LMA), middle Missouri Arm (MMA), and upper Missouri Arm (UMA). The dam was closed in 1937 and is the largest water body in the state of Montana, with 240,000 surface acres at full multiple use pool. Full flood pool is reached at 2250 and multiple use pool is reached at 2246 mean feet above sea level (MSL). At full multiple use pool 1,500 miles of shoreline exists in 130 linear miles of the reservoir with a maximum depth of 220 feet. The bottom of the multiple use pool is 2234.19 MSL and the bottom of the multipurpose carryover zone is 2160 feet MSL. Fort Peck Reservoir reached peak elevation on June 28th, 2017 at 2240.25 mean feet above sea level (MSL) from a minimum elevation on January 28th, 2017 at 2233.86 MSL, an increase of 6.39 feet (Figure 2). Reservoir elevations are predicted to rise approximately 10 feet from March through July and fall beginning in August of 2017 based on the April 2017 upper basic forecast (USACE 2018).

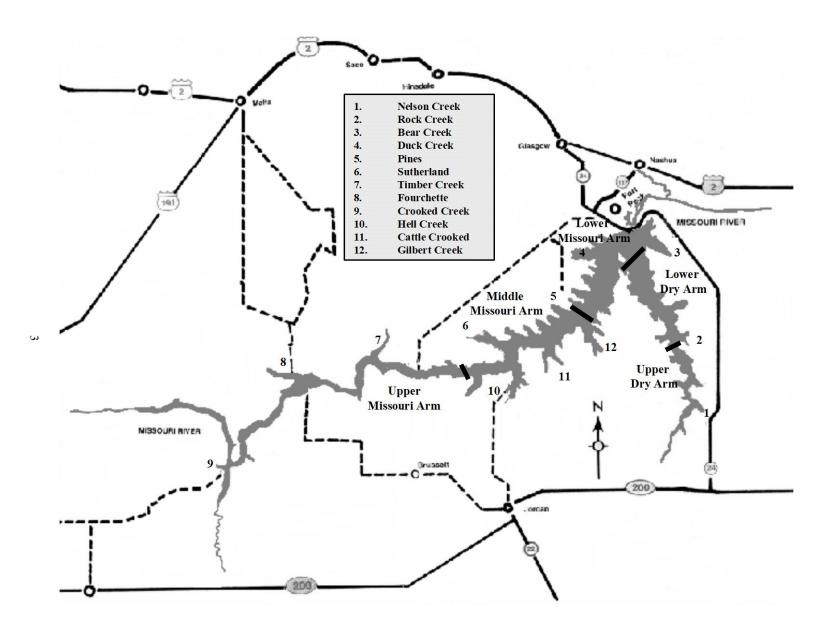


Figure 1. Fort Peck study area describing major sampling zones and select specific locations.

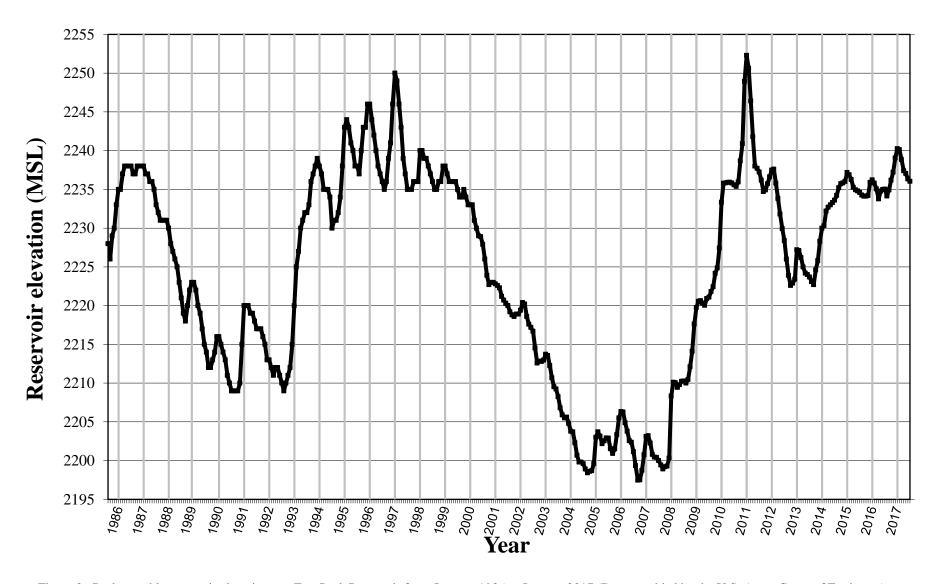


Figure 2. Peak monthly reservoir elevations on Fort Peck Reservoir from January 1986 to January 2017 (Data provided by the U.S. Army Corps of Engineers).

SAMPLING METHODS

Data Collection

- Spring sampling was conducted from April 5th to April 23rd, 2017 in the Big Dry Arm with 4-ft x 6-ft modified fyke nets of 1-in square mesh rigged and 30 to 50-ft leads. These sites are not standardized due to fluctuations in reservoir elevations. This netting effort is targeted for collection of walleye and northern pike to provide an egg source to meet stocking requests for Fort Peck Reservoir and other sport fisheries for the state of Montana. Not all fish are weighed and measured during the egg-taking effort due to time constraints, limited manpower, and rough conditions at times. Therefore, subsamples of fish are presented in the tables and length frequency distributions of this report. Vokoun et al. (2001) recommended using 300-400 individuals when constructing length frequency distributions with a given accuracy and precision.
- Limnological sampling was conducted at six sites (Bug Creek, Spring Creek, Haxby, Pines, Hell Creek, and Timber Creek) throughout the reservoir. Profile measurements were collected at 10-ft intervals using a Hydrolab equipped with a DS5 probe and Surveyor 4 data logger from May through September during the middle of each month. Profile measurements were recorded from the subsurface to the maximum depth at each site. Specific measurements included: temperature (°C), dissolved oxygen (mg/L), pH (standard units), turbidity (NTU), and total dissolved solids (g/L). A detailed table is located in Appendix 3 of the report.
- Zooplankton samples were collected using a 153 μ mesh net with a 12-in diameter opening and a 1:3 cone. Sampling was conducted at the same six sites listed above to address differences in general productivity and morphology of the reservoir. Fifty-foot vertical tows were made monthly at each of the sampling stations from May through September. Two tows were conducted at each site and pooled into one sample. Zooplankton processing methods follow those described by Leathe and Graham (1982).
- One hundred sinking experimental multifilament gill nets 125-ft x 6-ft deep consisting of 25-ft panels of 3/4, 1, 1 1/4, 1 1/2, and 2-in square mesh were fished from 10 to 30-ft depths at standardized locations. Gill netting occurred from July 18th to August 9th, 2017 to monitor distribution, species composition, relative abundance, and population parameters for game and native species throughout the reservoir. A list of sampling dates by region, water surface temperature and reservoir elevation during time of sampling are presented in Appendix 3.
- All walleye otoliths were collected at all sampling locations. Otoliths were mounted in epoxy and cut
 into thin sections on an Isomet saw and later mounted on glass slides. Walleye otoliths were used as
 an aging structure because of their higher precision when compared to scales and spines (Erickson
 1983; Isermann et al. 2003). Growth was expressed as mean length-at-age at time of capture in
 July/August for walleye.
- Beach seining was conducted from August 6th to August 30th, 2017 using a 100-ft x 9-ft beach seine of 3/16-in square mesh at 100 standardized locations throughout the reservoir, to determine relative abundance and reproductive success of game and forage fish.
- Twelve multifilament gill nets 100-ft x 6-ft with ½-in square mesh were fished vertically from the water's surface to sample young-of-year cisco from September 19th to September 28th, 2017. Additional mesh sizes of ¾, 1, 1 ¼, 1 ½-in mesh were incorporated in 2013 to sample adult cisco. Only the lower Big Dry, lower Missouri, and middle Missouri Arms were sampled because they contained sufficient depths of 100 ft. Lengths and weights were collected from the first 100 cisco captured per mesh, per site.
- Electrofishing was used during October 6th to October 24th, 2017 to locate, sample, and collect chinook salmon as part of the annual egg-take effort.
- Chinook salmon otoliths were collected from all mortalities used in the egg taking process. Otolith preparation followed methods outlined by Secor et al. (1992). Otoliths were mounted in epoxy and cut into thin sections on an Isomet saw and later mounted on glass slides.

Data Analysis

Relative abundance of fish species was expressed as mean catch per unit effort (CPUE) for modified fyke nets (No./net night), gill net (No./net night), and seine catches (No./haul).

Proportional stock density (PSD; Anderson and Weithman 1978) and relative stock density (RSD) values were calculated for channel catfish, northern pike, sauger, smallmouth bass, and walleye (Gablehouse 1984). However, the terminology to PSD has been changed to proportional size distribution and use of RSD was discontinued to assist in communication and name the index more correctly (Guy et al. 2007). Length categories used to calculate PSD values are listed in Table 1.

Table 1. Minimum lengths (in) of length-class designations used when calculating proportional size distribution values for fish population survey samples.

Canadas	Length Class								
Species	Stock	Quality	Preferred	Memorable	Trophy				
Channel catfish	11	16	24	28	36				
Northern pike	14	21	28	34	44				
Sauger	8	12	15	20	25				
Smallmouth bass	7	11	14	17	20				
Walleye	10	15	20	25	30				

Relative weights (*Wr*; Anderson 1980) were calculated using the standard weight (*Ws*) equations developed for channel catfish (Brown et al. 1995), northern pike (Willis 1989), and walleye (Murphy et al. 1990). Calculated values for channel catfish and northern pike are presented in Appendix 4, while values for walleye are presented in the results and discussion section of this report. Proportional size distribution, PSD-P, and *Wr* values were calculated using EXCEL.

RESULTS AND DISCUSSION

Spring Trap Netting

Spawning walleye and northern pike populations were sampled in the Nelson Creek to McGuire Creek area of Fort Peck Reservoir from April 5th to April 23rd, 2017. A total of 277-trap days were committed to walleye spawning efforts in 2017. Netting effort was lower than the previous year due to favorable temperatures during trap netting efforts which led to increased catch rates of walleye and collection of enough eggs to meet stocking requirements. Ice cover has typically receded by the first week in April and the walleye spawning operation concludes in three to four weeks. Water surface temperatures were 48°F when trap netting efforts commenced and gradually increased to 52°F. Walleye spawning activity peaks when water temperatures are 43°F to 50°F in the north-central United States (Becker 1983).

Because of the favorable and gradually increasing water temperatures in 2017, walleye egg collection efforts were exceeded. Fluctuations and declines in water temperatures have been shown to prolong spawning or result in females retaining their eggs (Derback 1947). However, the egg-take goal of 60 million was met and 81 million total eggs were collected. The fertilized walleye eggs were sent to Fort Peck and Miles City Fish Hatcheries. A total of 30.2 million fry and 1.9 million walleye fingerlings were stocked in various locations throughout Fort Peck Reservoir (Appendix 2). Kerr (2011) recommended walleye release sites should be increased as size and basin complexity of the waterbody increases to distribute them over as wide an area as possible. The goal of 3 million fingerlings for Fort Peck Reservoir was not met (FPRFMP 2012). This was due to below average fingerling production at the Miles City and Fort Peck hatcheries. Warmer than normal water temperatures were observed in the rearing ponds at Fort Peck and Miles City hatcheries during the time of fry stocking (i.e., Wade Geraets, personal communication).

Walleye

Relative abundance of walleye captured in spring trap nets was 8.2 per net in 2017, which increased from the previous year, and above the long-term average of 7.1 per net (1982-2017; Table 2). Average length and weight increased slightly from 18.1 inches and 3.0 pounds in 2016 to 20.4 inches and 3.8 pounds in 2017. Furthermore, length frequency distributions showed 56% of walleye were greater than 20 inches in 2017 compared to 24% in 2016 (Figure 3). The combination of more female walleye measured 2017 and the large 2011-year class as indicated by the higher number of fish from 21-23 inches influenced this (Figure 4). Typically, more male walleye are captured than females during trap netting, but more females were captured in 2017. A total of 1,297 female and 831 male walleye were captured in 2017 compared to 976 female and 1,674 male walleye in 2016. In general, length frequency distributions during the spring trap netting effort indicated male walleye were smaller when compared to female; however, male walleye up to 29 inches were captured (Figure 4).

Table 2. Summary of mean CPUE (No./net-night), mean length (in), and mean weight (lb)walleye and northern pike captured during spring trap netting in the upper Big Dry Arm of Fort Peck Reservoir, 1982-2017. N is the total number of walleye and northern pike collected.

		Net-	Walleye	Walleye	Northern pike	Northern pike
Year	Date	Nights	N	CPUE	N	CPUE
1982	(4/21-5/07)	89	655	7.4	221	2.5
1983	(4/06-5/09)	106	725	6.8	87	0.8
1984	(4/10-5/04)	96	579	6	21	0.2
1985	(4/08-4/26)	97	1,202	12.4	69	0.7
1986	(4/07-4/24)	102	1,448	14.2	174	1.7
1987	(4/07-4/24)	220	1,512	6.9	78	0.3
1988	(4/06-4/22)	214	1,610	7.5	163	0.8
1989	(4/25-5/06)	207	2,360	11.4	383	1.9
1990	(4/05-5/04)	292	1,863	6.4	513	1.8
1991	(4/09-5/10)	375	793	2.1	491	1.3
1992	(4/07-4/29)	278	1,585	5.7	684	2.5
1993	(4/15-4/30)	172	1,945	11.3	201	1.2
1994	(4/12-4/26)	168	1,882	11.2	160	1.0
1995	(4/11-4/28)	473	3,284	6.9	648	1.4
1996	(4/15-5/02)	391	3,231	8.3	2,307	5.9
1997	(4/15-4/29)	307	3,937	12.8	2,652	8.6
1998	(4/04-4/29)	477	2,806	5.9	1,354	2.8
1999	(3/27-4/26)	434	5,673	13.1	2,573	5.9
2000	(4/04-4/28)	392	2,126	5.4	603	1.5
2001	(4/06-4/27)	328	3,362	10.3	1,922	5.9
2002	(4/17-5/09)	349	2,377	6.8	1,713	4.9
2003	(4/11-5/01)	426	2,366	5.6	1,579	3.7
2004	(4/09-4/26)	324	2,323	7.2	2,174	6.7
2005	(4/06-4/27)	537	2,030	3.8	1,327	2.5
2006	(4/12-5/01)	579	2,345	4.1	503	0.9
2007	(4/03-5/01)	617	2,478	4	1,425	2.3
2008	(4/18-5/07)	383	1,151	3	629	1.6
2009	(4/18-4/28)	176	1,740	9.9	813	4.6
2010	(4/13-4/30)	289	1,470	5.1	525	1.8
2011	(4/18-5/06)	399	1,341	2.8	911	2.3
2012	(3/27-5/01)	730	1,576	2.2	1,499	2.1
2013	(4/17-5/10)	484	2,176	4.5	5,082	10.5
2014	(4/18-5/05)	363	1,670	4.6	2,864	7.9
2015	(3/31-4/23)	405	1,740	4.3	1,147	2.8
2016	(3/29-4/21)	427	2,672	6.3	2,382	5.6
2017	(4/05-4/23)	277	2,261	8.2	1,040	3.8

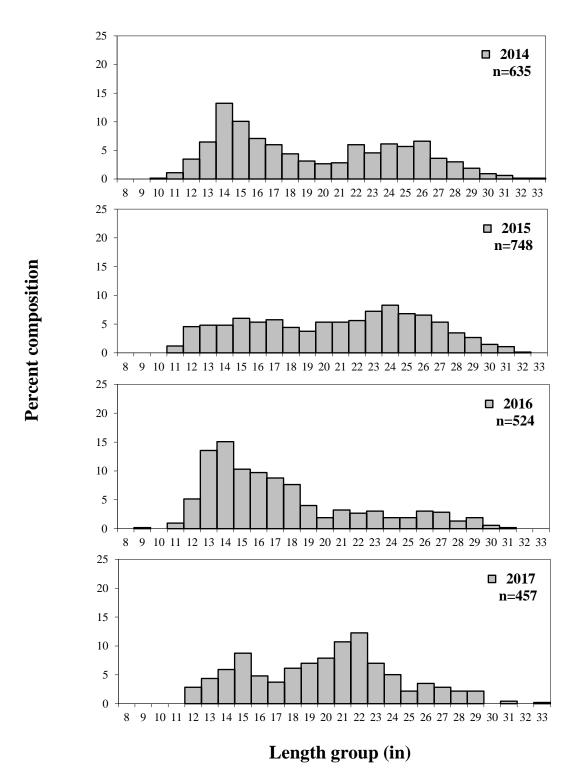


Figure 3. Length frequency of subsampled walleye collected during spring trap netting in the upper Big Dry Arm of Fort Peck Reservoir, 2014-2017.

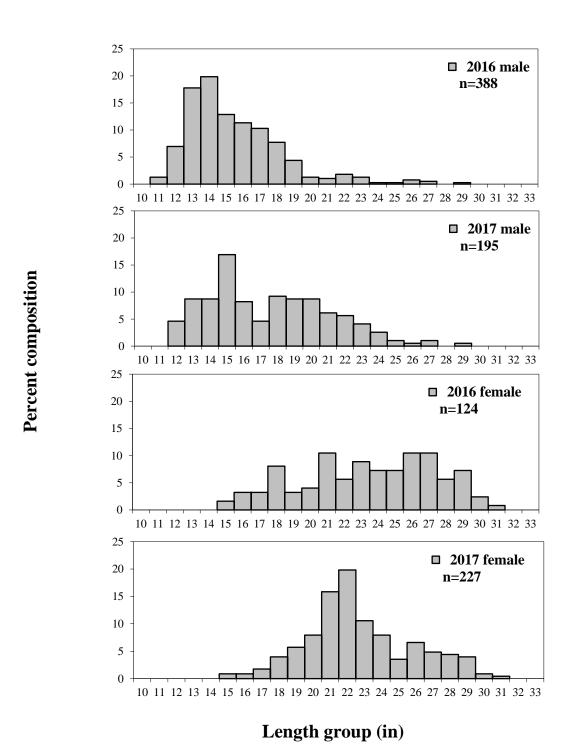


Figure 4. Length frequency of subsampled male and female walleye collected during spring trap netting in the upper Big Dry Arm of Fort Peck Reservoir, 2016-2017.

LIMNOLOGY AND ZOOPLANKTON MONITORING

Water temperature in Fort Peck Reservoir ranged from 22.9°C at the subsurface to 5.5°C at the bottom (Appendix 3). Temperatures throughout the water column were coolest during May and warmest during August. Water temperatures below the surface were warmest at the uppermost sites (Timber Creek and Bug Creek) during the sampling period but gradually decreased at each site moving downstream towards the dam area.

Near isothermal conditions were observed during the month of May at each site. Thermal stratification of Fort Peck Reservoir was not observed until July and strong thermoclines were present in August and September (Appendix 3). Each site was thermally stratified during the month of August with the exception of Bug Creek and Timber Creek. Thermocline depth varied by month and site. The most pronounced thermocline was located at the Haxby site during July (Figure 5; Appendix 3).

Dissolved oxygen concentrations were highest (9.6 mg/L) during May when the reservoir was coolest. Uniform dissolved oxygen levels were also observed during this time when near isothermal conditions were present (Appendix 3). Dissolved oxygen concentrations decreased to their lowest levels during late summer/early fall. Dissolved oxygen levels fell below 5 mg/L at Pines during September. It should be noted that dissolved oxygen levels of less than 5 mg/L may limit some deep-water salmonid habitat (e.g., lake trout; Sellers et al. 1998). No anoxic conditions were observed at any of the locations in 2017.

The maximum estimated zooplankton density was 76.1/L which occurred in June of 2017. Cyclopoids dominated the zooplankton community throughout the sampling season and highest densities were observed during May at 27.0/L. *Bosmina* and *Daphnia* were the two most abundant cladocerans sampled and were most abundant during June (Figure 6). Cladocerans, *Leptodora* and *Diaphanosoma*, were present in small numbers and were only collected periodically. These trends in seasonal abundance are similar to previous findings on Fort Peck Reservoir and other large mainstem Missouri River Reservoir systems (Wiedenheft 1985; Mullins 1991; Fielder 1992).

Comparison of total densities for all zooplankton from each station indicated that the mid to lower portions of Fort Peck Reservoir were slightly more productive than other areas sampled (Figure 7). Wiedenheft (1985) noted a similar trend in zooplankton density. Mean densities of zooplankton by location in 2017 were similar to slightly lower than those observed in 2016. A possible explanation for similar zooplankton densities in 2017 and 2016 could be explained by stable reservoir elevations and similar flows into the reservoir. No strong inflows into Fort Peck Reservoir where observed in either year. Reduced inflows and little to increase in reservoir elevation has been shown to decrease standing crops of zooplankton and diversity of the zooplankton community (Martin et al. 1981).

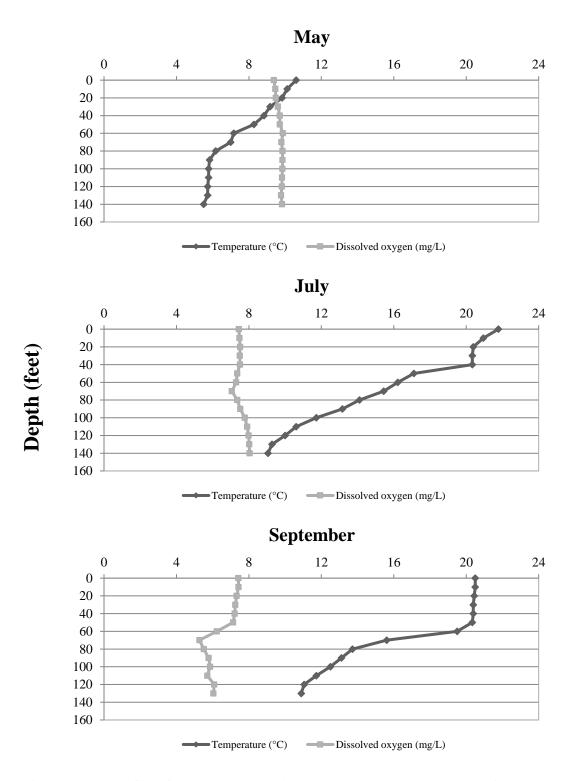


Figure 5. Depth profiles of temperature (°C) and oxygen (mg/L) located near Haxby Point on Fort Peck Reservoir, May-September 2017.

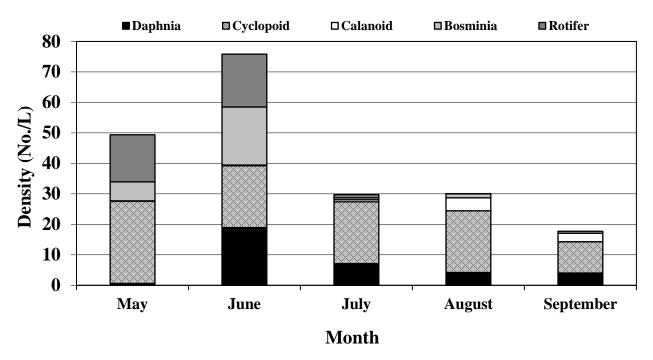


Figure 6. Mean zooplankton density (number of organisms/L) pooled from reservoir-wide samples by taxonomic group and month for Fort Peck Reservoir, 2017.

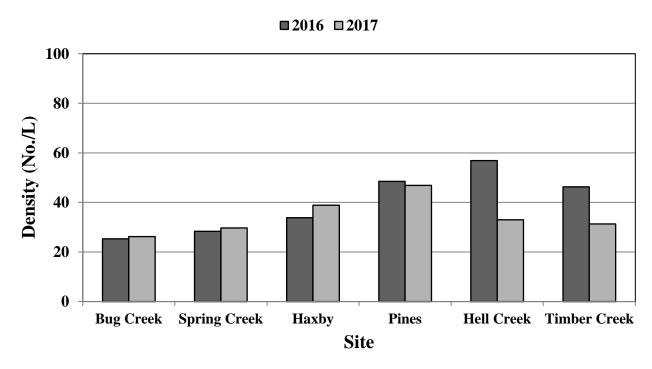


Figure 7. Mean zooplankton density (number of organisms/L) pooled for all months (May-September) for Fort Peck Reservoir, 2016-2017.

RESERVOIR-WIDE GILL NETTING

Standard experimental gill nets were set throughout the reservoir from July 18th to August 9th, 2017 when water surface temperatures ranged from 68.6°F to 75.5°F. Gill netting provides information on species distribution; composition, relative abundance, population parameters, and stomach contents of game species. Fifteen species were captured for a total of 1,636 fish (Table 2). Walleye, common carp, and goldeye were the most abundant species captured overall, with catch rates of 3.1, 2.2, and 1.9 per net night, respectively. Fish with catch rates equal to or greater than 1.0 per-net night include: channel catfish, northern pike, river carpsucker, and smallmouth bass.

Walleye

Relative abundance of walleye in 2017 was 3.1 per net which was down from the previous year (Figure 8). This was slightly below the long-term average of 3.8 per net from 1984 to 2017. The three-year running average goal of 3.6 per net was met (4.1 per net in 2015-2017) as outlined in the FPRFMP. Preferred and stock-length groups comprised the largest group of gill-netted walleye in 2017 (Figure 8). However, stock and quality length groups have declined since 2012 suggesting limited recruitment. Relative abundance of walleye was greatest in the lower Missouri arm with a catch rate of 3.7 per net (Table 3).

Length frequency distributions of walleye in 2017 indicated a broad distribution with a moderate abundance of 19 to 22- inch fish (Figure 9). This group represented 32% of all walleye gill netted in 2017. In 2016, this group was in the 17 to 21-inch range and comprised 39% of all walleye captured. In 2015, this group of fish was in the 12 to 16-inch range and comprised 50% of all walleye gill netted and as 10 to 14-inch fish in 2014 they comprised 50% of all fish sampled. This would suggest a large year class or classes present. Based on length frequencies, walleye in Fort Peck Reservoir don't recruit to experimental gill nets until they are greater than 10 inches in length.

Mean length-at-age for walleye in 2017 varied compared to the six-year average (Table 5). Higher mean lengths-at-age were observed for age-8 and older fish indicating favorable growth over the last few years due to the higher relative abundance of cisco. In contrast, mean lengths-at-age for age-4 and younger were lower in 2017 compared to previous years due to the continued low relative abundance of shoreline forage. It should be noted that a large group of 6-year old fish (2011-year classes) were observed in 2017 and comprised 36% of all walleye aged. Similarly, this year class comprised 35% of the walleye aged in 2016. Multiple year classes were present with walleye up to age-26.

Overall, relative weights of walleye in 2017 showed a slight decrease compared to the previous year (Table 6). Relative weights remained similar for stock and quality length groups while preferred and memorable length groups decreased (Figure 10). The continued low relative weights for stock-length walleye can be explained by a decrease in shoreline forage fish production over the last several years. While relative weights of quality, preferred, and memorable-length walleye decreased in 2017, they were higher than the drought/low water years (2005-2008). These improved relative weights can be attributed to a large abundance of adult cisco (8"). Cisco have been found to be an important prey item for walleye greater than 18 inches in Fort Peck Reservoir (Mullins 1991).

Proportional size distribution (PSD) and proportional size distribution-preferred (PSD-P) are measures of balance for fish populations (Gabelhouse 1984). The measures are percents of fish captured at substock (<10"), and numbers of fish of each size and larger for stock (>10"), quality (>15"), preferred (>20"), and memorable (>25") size fish. Changes in each group can be from increases or decreases in recruitment and natural or fishing mortality. Anderson and Weithman (1978) models of walleye PSD's suggest a range of 30-60 as favorable values for walleye populations. Since 1988, walleye PSD would have fallen into the favorable category, with the exception of 1995 and 1996. The favorable trend resumed in 1998 and continued into 2015 with a value of 59 (Table 6). However, PSD of walleye in 2017 was 62 making it the highest on record. In addition, PSD-P was 40 indicating a greater abundance of preferred size walleye in 2016. A ratio between 10 and 20 is considered desirable as a PSD-P for a balanced population. High values of PSD-P indicate an abundance of larger fish with a small stock size available.

Table 3. Mean CPUE (No./net-night), mean length (in), and mean weight (lb) of fish collected by experimental gill nets in Fort Peck Reservoir during July-August, 2017. *N* is total number collected for length and weight measurements.

				Average		
			Length		Weight	
Species	Number	CPUE	Inches	N	Pounds	N
Black crappie	23	0.2	8.4	23	0.3	23
Channel catfish	140	1.4	18.0	140	2.0	140
Cisco	8	0.1	9.5	8	0.3	8
Common carp	215	2.2	20.4	215	4.0	215
Freshwater drum	31	0.3	14.5	31	1.5	31
Goldeye	188	1.9	12.9	188	0.7	188
Northern pike	184	1.8	26.0	184	4.4	184
River carpsucker	129	1.3	20.4	129	4.8	129
Sauger	13	0.1	17.7	13	1.9	13
Shorthead redhorse	94	0.9	13.8	94	1.2	94
Smallmouth bass	133	1.3	12.9	133	1.5	133
Smallmouth buffalo	87	0.9	24.4	87	8.9	87
Walleye	311	3.1	17.0	311	2.2	311
White sucker	3	< 0.1	17.3	3	1.9	3
Yellow perch	77	0.8	6.9	77	0.2	77

Table 4. Number (*N*) and mean catch per unit effort (CPUE; No./net-night) of fish species collected by experimental gill nets in Fort Peck Reservoir during July-August, 2017.

	1	UBD ¹]	LBD^2	I	LMA^3	N	MMA^4	τ	JMA ⁵	Т	otal
Species	N	CPUE	N	CPUE	N	CPUE	N	CPUE	N	CPUE	N	CPUE
Black crappie	1	< 0.1	0		0		0		22	1.1	23	0.2
Channel catfish	23	1.2	4	0.2	0		20	1.0	93	4.7	140	1.4
Cisco	0		1	< 0.1	0		4	0.2	3	0.2	8	0.1
Common carp	21	1.1	34	1.7	38	1.9	51	2.6	71	3.6	215	2.2
Freshwater drum	6	0.3	2	0.1	4	0.2	8	0.4	11	0.6	31	0.3
Goldeye	54	2.7	2	0.1	8	0.4	16	0.8	108	5.4	188	1.9
Northern pike	53	2.7	43	2.2	29	1.5	33	1.7	26	1.3	184	1.8
River carpsucker	35	1.8	14	0.7	18	0.9	22	1.1	40	2.0	129	1.3
Sauger	2	0.1	1	< 0.1	0		3	0.2	7	0.4	13	0.1
Shorthead redhorse	23	1.2	4	0.2	1	< 0.1	9	0.5	57	2.9	94	0.9
Smallmouth bass	17	0.9	27	1.4	19	1.0	41	2.1	29	1.5	133	1.3
Smallmouth buffalo	14	0.7	14	0.7	7	0.4	18	0.9	34	1.7	87	0.9
Walleye	42	2.1	64	3.2	74	3.7	66	3.3	65	3.3	311	3.1
White sucker	0		2	0.1	0		1	< 0.1	0		3	< 0.1
Yellow perch	10	0.5	8	0.4	10	0.5	25	1.3	24	1.2	77	0.8
Total	301	15.1	220	11.0	208	10.4	317	15.9	590	29.5	1,636	16.4

¹Upper Big Dry (UBD): Nelson Creek., Lone Tree Creek, McGuire Creek, Bug Creek, Lost Creek

²Lower Big Dry (LBD): Box Creek, South Fork Rock Creek, North Fork Rock Creek, Box Elder Creek, Sand Arroyo, Spring Creek

³Lower Missouri Arm (LMA): Spillway Bay, Bear Creek, North Fork Duck Creek, South Fork Duck Creek, Main Duck Creek

⁴Middle Missouri Arm (MMA): Pines Bay, Gilbert Creek, Cattle/Crooked Creek, Hell Creek, Sutherland Creek, Snow Creek

⁵Upper Missouri Arm (UMA): Cabin Coulee, Wagon Coulee, Bone Trail, Timber Creek, Seven Blackfoot, Fourchette Bay, Devils Creek

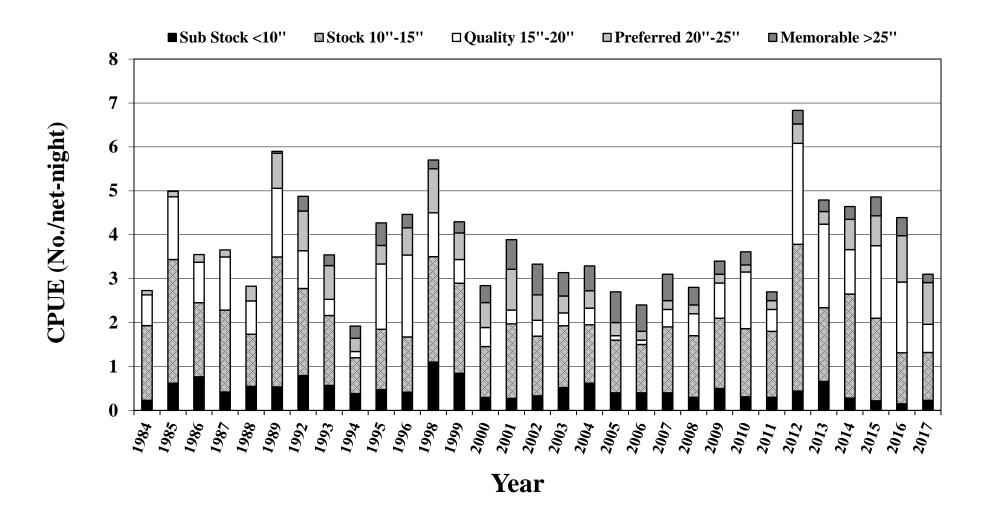


Figure 8. Length structure, in terms of catch per unit effort (CPUE), of walleye collected by experimental gill nets in Fort Peck Reservoir during July-August, 1984-2017 (no data for 1990-1991 and 1997).

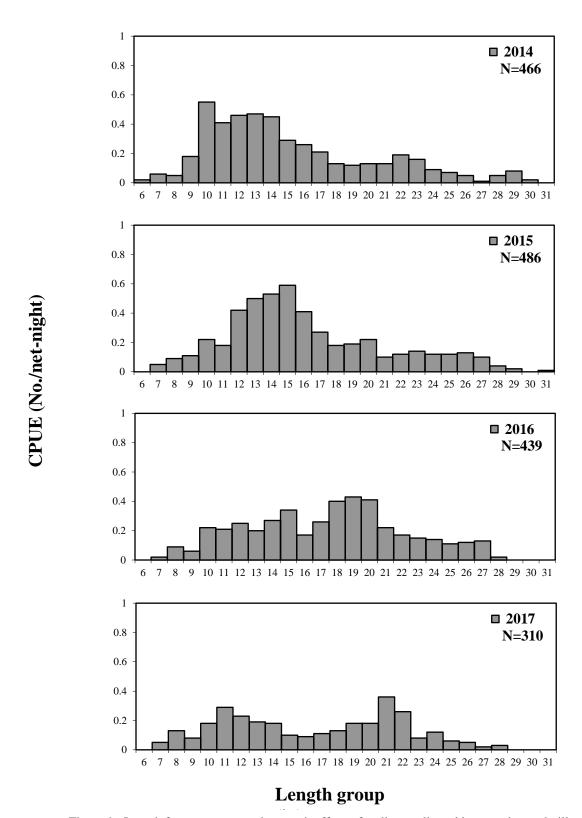


Figure 9. Length frequency, as catch per unit effort, of walleye collected by experimental gill nets in Fort Peck Reservoir during July-August, 2014-2017.

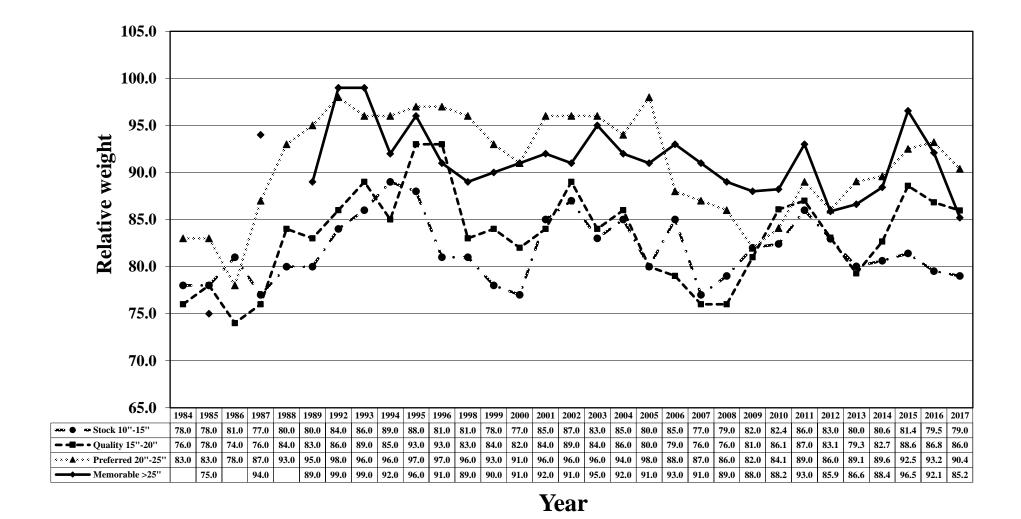


Figure 10. Relative weights for stock, quality, preferred, and memorable length groups of walleye collected by experimental gill nets in Fort Peck Reservoir, 1984-2017 (no data for 1990-1991 and 1997).

Table 5. Mean length-at-age at time of capture (in) for walleye collected in experimental gill nets, 2012-2017, on Fort Peck Reservoir, and aged from sectioned otoliths.

Year							Le	ength at age	at capture (i	in)					
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
2012	Mean	8.4	12.2	13.0	15.3	16.7	18.3	19.8	18.8	21.1	21.8	18.9	17.7	20.3	28.6
	N	34	181	67	235	42	28	22	3	5	7	2	1	1	2
	SE	0.2	0.1	0.2	0.1	0.3	0.3	0.5	1.6	1.4	1.6	2.8			0.4
	Range	6.1-10.5	7.9-16.7	10.4-17.0	10.6-20.6	13.6-20.5	15.5-21.1	14.7-22.9	15.7-21.3	16.7-24.6	15.9-27.3	16.1-21.8			28.2-28.9
2013	Mean	7.7	9.7	14.1	15.5	17.2	18.2	21.6	22.7	26.5	22.9	27.8		21.4	
	N	6	77	147	27	66	16	9	8	1	4	1		1	
	SE	0.3	0.2	0.2	0.4	0.3	0.7	1.1	1.3		1.9				
	Range	7.2-8.8	6.7-14.2	8.5-18.5	11.5-21.1	8.9-22.5	14.1-22.8	17.3-28.5	16.9-26.5		18.8-27.6				
2014	Mean	7.1	10.5	11.6	14.6	16.0	19.3	20.2	22.6	22.3	21.0	25.2	21.2	26.9	
	N	5	14	169	89	39	56	11	15	12	4	1	3	3	
	SE	0.1	0.4	0.1	0.2	0.4	0.4	1.0	0.5	0.9	1.2		1.0	2.4	
	Range	6.8-7.3	6.9-12.6	7.7-17.1	11.4-23.2	10.4-21.6	13.2-24.4	14.7-24.1	19.2-25.2	15.5-26.5	17.8-23.2		19.3-22.4	22.2-30.1	
2015	Mean	7.8	9.5	13.0	14.2	16.8	18.7	20.9	23.7	22.3	24.1	27.0	25.8	21.4	21.0
	N	2	26	27	184	55	27	45	14	9	11	1	11	3	3
	SE	0.1	0.3	0.4	0.1	0.3	0.5	0.5	0.9	1.8	1.2		0.8	3.7	1.4
	Range	7.8-7.9	7.3-12.5	9.4-17.0	9.8-19.8	12.7-22.1	13.4-23.5	15.4-26.2	15.2-27.4	11.6-27.2	17.0-29.4		21.3-29.1	17.4-28.8	18.3-22.8
2016	Mean		9.5	12.1	15.4	16.8	19.0	21.5	23.0	24.1	19.6	24.0	24.9	23.8	18.2
	N		18	58	32	141	55	15	45	17	2	15	4	5	1
	SE		0.3	0.3	0.5	0.2	0.4	0.6	0.4	0.8	0.6	0.7	1.6	1.1	
	Range		7.6-12.5	8.3-16.1	10.1-19.8	10.5-23.3	14.0-24.3	18.5-26.8	18.1-27.4	16.9-27.6	19.0-20.2	18.9-27.7	20.9-27.6	21.2-27.8	
2017	Mean	7.4	9.1	10.6	13.0	16.6	18.4	19.8	23.5	23.6	23.5	23.3	28.3		23.4
	N	2	16	33	49	22	103	22	11	20	3	4	1		1
	SE	0.3	0.2	0.2	0.3	0.9	0.3	0.8	0.6	0.5	1.6	1.8			
	Range	7.1-7.7	7.6-10.6	7.7-13.1	9.6-18.0	10.4-22.2	11.8-24.4	10.9-24.6	20.8-27.8	18.1-26.6	21.9-26.7	19.8-28.3			
Mean of me	eans	7.7	10.1	12.4	14.7	16.7	18.6	20.6	22.4	23.3	22.2	24.4	23.6	22.8	22.8

Northern Pike

Relative abundance of northern pike captured in gill nets was 1.8 per net in 2017 which decreased from the previous year (Table 3; Figure 11). The three-year running average goal of 2.0 northern pike per net was met (2.2 per net in 2017) as outlined in the FPRFMP. Average length and weight of northern pike in 2017 was 26.0 inches and 4.4 pounds which was lower when compared to the drought years (2000-2005; Table 7). This is due to small to medium-sized individuals recruiting into the population as a result of limited natural reproduction. In 2017, 36% of the northern pike captured were less than 25 inches (Figure 12). This was an improvement compared to 2005-2006 when 20% of the northern pike captured in gill nets were less than 25 inches (Headley 2007).

In 2017, northern pike PSD was 90 and PSD-P was 32. During the drought years, PSD ranged from 93 to 98 and PSD-P ranged from 55-71 indicating a population comprised of larger fish. With decreasing to stable water levels from 2011 to 2017, inundation of terrestrial vegetation has become limited throughout the reservoir decreasing the amount of ideal spawning/rearing habitat. Relative abundance of shoreline forage has also decreased over the last several years limiting food availability for juvenile northern pike. As a result, relative abundance of stock length groups of northern pike has started to decrease. It should be noted that substock northern pike have been captured in 2015-2017 suggesting some limited natural reproduction as no northern pike have been stocked into the reservoir. Relative weight of northern pike decreased from 93 in 2016 to 90 in 2017.

Channel Catfish

Relative abundance of channel catfish captured by gill netting was 1.4 per net in 2017. This was a decrease compared to the previous year and below the 31-year average of 2.0 per net (Figure 13). Similar to previous years, the highest abundance was observed in the Upper Missouri Arm at 4.7 per net (Table 4). In 2017, mean length and weight was 18.0 inches and 2.0 pounds, respectively. This was slightly higher than the long-term average of 16.2 inches and 1.7 pounds (Table 8). Relative weights of channel catfish decreased slightly from 87 in 2016 to 85 in 2017. Catfish PSD and PSD-P were 73 and 6, respectively, indicating a population comprised of good numbers of larger fish.

Sauger

Sauger numbers have declined in Fort Peck Reservoir since 1985 and remained low since then (Figure 13). This decline has occurred in spite of restrictive angling regulations (i.e., 1 sauger daily and 2 in possession) implemented in 2002. However, fishing regulations changed in 2016 allowing anglers to keep 2 sauger daily and 4 in possession within the walleye/sauger combination of 5 daily and 10 in possession. Relative abundance in 2016 was 0.3 per net which was similar to the previous year. Average size of sauger in 2017 was 17.7 inches and 1.9 pounds with a relative weight of 75. This population relies on natural reproduction from the Missouri River where more suitable spawning habitat is available (Bellgraph et al. 2008). Relative abundance for sauger was highest in the upper Missouri arm with a catch rate of 0.4 per net (Table 4).

Table 6. Summary of mean catch per unit of effort (CPUE; No./net-night), standard error (SE), mean length (in), mean weight (lb), mean *Wr*, and stock density indices of walleye collected in experimental gill nets on Fort Peck Reservoir, 1992-2017 (no data for 1997).

	No.											
Year	walleye	CPUE	SE	Length	Weight	Wr	Substock ¹	Stock ²	Quality ³	Preferred ⁴	PSD ⁵	PSD-P ⁶
1992	297	4.7	0.4	15.8	2	88	39	257	132	78	51	30
1993	258	3.5	0.4	15.3	2	91	38	219	101	75	46	34
1994	139	1.8	0.2	15.9	2.4	92	23	116	54	43	47	37
1995	330	4.2	0.3	16.6	2.4	91	34	295	189	73	64	25
1996	361	4.4	0.4	16.5	2.1	89	31	327	228	75	70	23
1998	418	5.6	0.4	14.8	1.6	86	79	339	159	89	47	26
1999	329	4.2	0.3	14.4	1.5	90	63	266	108	67	41	25
2000	250	2.8	0.2	16.6	2.3	83	26	224	122	84	54	38
2001	272	3.9	0.4	17.4	2.8	88	19	253	134	112	53	44
2002	324	3.3	0.2	17.4	2.8	90	32	291	159	124	55	43
2003	301	3.1	0.3	17.3	2.8	88	38	263	156	105	59	40
2004	250	3.3	0.3	15.9	2.3	88	47	203	102	73	50	36
2005	227	2.7	0.3	16.3	2.6	85	37	190	88	78	46	41
2006	207	2.4	0.2	16.2	2.6	87	38	168	78	66	46	39
2007	261	3.1	0.3	16.2	2.3	81	36	225	100	70	44	31
2008	234	2.8	0.3	15.5	1.9	81	21	212	89	45	42	21
2009	393	3.3	0.3	14.6	1.4	83	59	332	143	53	43	16
2010	361	3.6	0.3	15.4	1.7	84	31	330	175	46	53	13
2011	267	2.8	0.3	14.9	1.7	88	25	251	99	45	39	18
2012	683	6.8	0.4	15.1	1.4	83	44	639	305	75	47	12
2013	479	4.8	0.4	15.0	1.5	81	66	413	245	55	59	13
2014	466	4.7	0.3	15.5	1.7	84	28	436	199	98	46	22
2015	486	4.9	0.4	16.6	2.1	87	22	464	276	111	59	24
2016	440	4.4	0.3	17.8	2.5	87	15	424	308	147	72	34
2017	310	3.1	0.3	17.0	2.2	85	23	287	178	114	62	40

¹Substock is the number of all walleye less than 10 inches, ²Stock is the number of all walleye greater than 10 inches, ³Quality is the number of all walleye greater than 15 inches, ⁴Prefered is the number of all walleye greater than 20 inches, ⁵PSD is the proportional size distribution (Quality/Stock), ⁶PSD-P is the relative stock density, preferred (Preferred/Stock).

Table 7. Summary of mean catch per unit of effort (CPUE; No./net-night), mean length (in), mean weight (lb), and mean *Wr* of northern pike collected in experimental gill nets on Fort Peck Reservoir during July-August, 1984-2017 (no data for 1990-1991 and 1997).

Year	N	CPUE	Length	Weight	Wr
1984	52	0.6	20.8	2.4	94
1985	36	0.4	24.1	3.5	97.8
1986	21	0.4	23.7	3.6	94.3
1987	60	0.7	19.7	2.3	106.7
1988	43	0.6	26.4	5.3	107
1989	47	0.7	24.4	4.5	110.2
1992	35	0.6	26.6	5.5	112.3
1993	47	0.6	28.3	6.4	113.9
1994	104	1.4	22.6	4.4	107.3
1995	295	3.8	20.1	2.5	114.6
1996	321	3.9	23.3	3.7	112.8
1998	231	3.1	24.7	4.3	104.6
1999	151	1.9	26.5	5.1	103.2
2000	134	1.5	28	6	106.5
2001	73	1	28.6	6.5	110.6
2002	144	1.5	29.5	7.2	102
2003	126	1.3	28.1	6.2	101.1
2004	75	1	29.1	6.7	100.1
2005	86	1	28.4	6.5	100.3
2006	108	1.3	26.1	5.2	98.9
2007	147	1.7	24.8	4.6	101
2008	137	1.6	26.6	5.2	100
2009	176	1.5	24.5	4.3	93.1
2010	191	1.9	23.4	3.9	100
2011	293	2.9	23.2	3.6	100
2012	503	5.0	23.6	3.6	99.3
2013	324	3.2	24.6	3.9	93.0
2014	336	3.4	25.8	4.6	96.2
2015	264	2.6	26.3	5.0	97.5
2016	226	2.3	25.8	4.6	92.9
2017	184	1.8	26.0	4.4	90.2

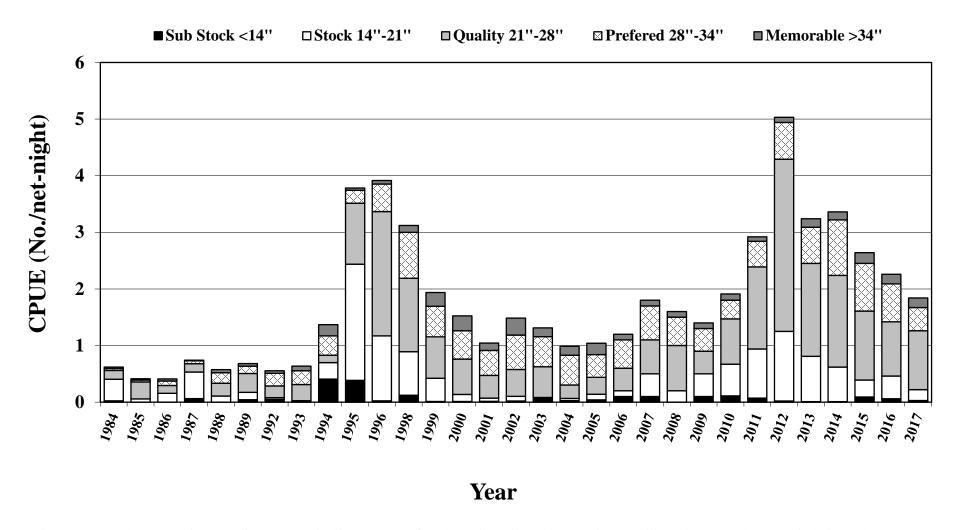


Figure 11. Length structure, in terms of catch per unit effort (CPUE), of northern pike collected by experimental gill nets in Fort Peck Reservoir during, July-August, 1984-2017, (no data for 1990-1991 and 1997).

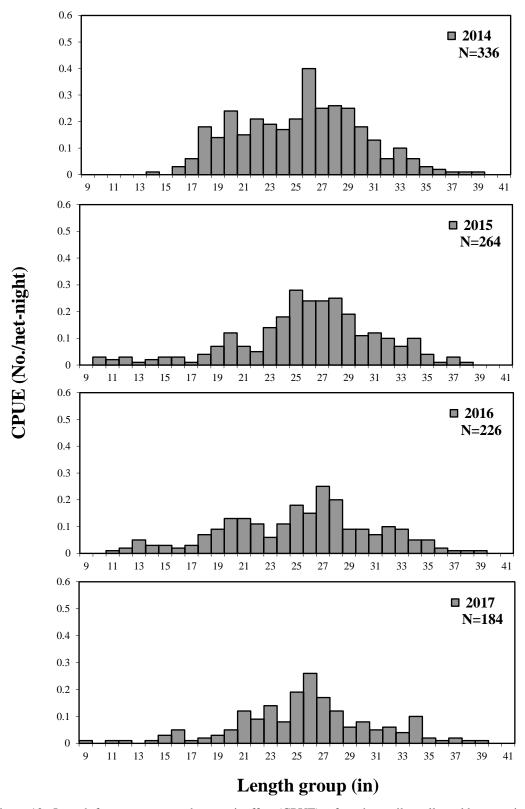
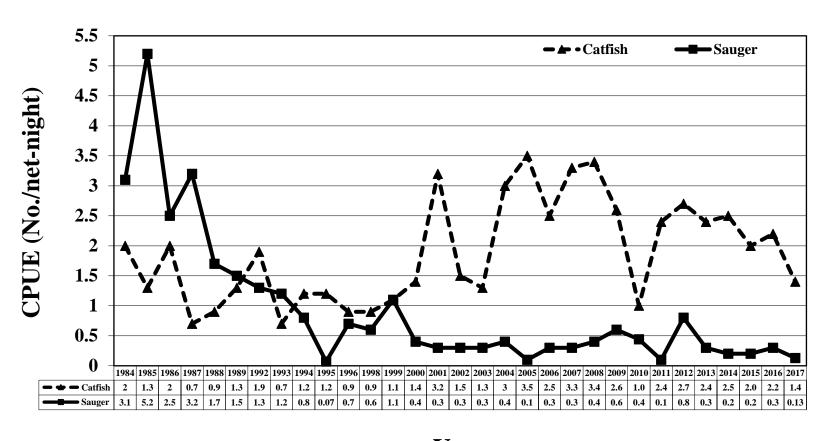



Figure 12. Length frequency, as catch per unit effort (CPUE), of northern pike collected by experimental gill nets in Fort Peck Reservoir during July-August, 2014-2017.

Year

Figure 13. Mean catch per unit of effort (CPUE; No./net-night) of channel catfish and sauger collected by experimental gill nets in Fort Peck Reservoir, 1984-2017 (no data for 1990-1991 and 1997).

Table 8. Summary of mean catch per unit of effort (CPUE; No./net-night), mean length (in) and mean weight (lb) of channel catfish collected in experimental gill nets on Fort Peck Reservoir, 1984-2017 (no data for 1990-1991 and 1997).

Year	N	CPUE	Length	Weight
1984	167	2.0	14.2	0.9
1985	115	1.3	14.5	1.1
1986	105	2.0	14.6	1.1
1987	53	0.7	15.3	1.2
1988	69	0.9	15.9	1.7
1989	99	1.4	16.5	1.5
1992	165	2.6	15	1.4
1993	68	0.9	14.9	1.4
1994	119	1.6	14.4	1.1
1995	123	1.6	16.3	1.6
1996	93	1.1	15.6	1.4
1998	91	1.2	18	2.3
1999	88	1.1	17.2	2.0
2000	122	1.4	17.5	2.0
2001	222	3.2	17.6	2.1
2002	145	1.5	18	2.1
2003	129	1.3	17.6	2.1
2004	227	3.0	15.7	1.8
2005	297	3.5	14.3	1.3
2006	215	2.5	15.1	1.4
2007	278	3.3	15.3	1.3
2008	289	3.4	14.2	1.1
2009	314	2.6	16.8	1.9
2010	104	1.0	18.4	2.4
2011	241	2.4	17.9	2.3
2012	272	2.7	17.4	1.8
2013	240	2.4	17.5	1.9
2014	246	2.5	18.0	2.0
2015	201	2.0	18.5	2.1
2016	217	2.2	17.1	1.8
2017	140	1.4	18.0	2.0

STOMACH CONTENTS OF GILL NETTED GAME FISH

Stomach contents of walleye, northern pike, sauger, and smallmouth bass captured in experimental gill nets from July 18th to August 9th, 2017 were examined for the presence of forage items. Northern pike had the most diverse diet followed closely by smallmouth bass and walleye (Table 9). Cisco were the most commonly identified fish found in northern pike, sauger, smallmouth bass, and walleye. The high frequency of occurrence of cisco observed in stomach contents can be explained by the high abundance of young-of-year and adult cisco observed in 2017 (Table 14). Empty stomach contents comprised a large portion of the walleye, northern pike, sauger, and smallmouth bass stomachs, which is attributed to purging of the stomach during stress.

Table 9. Percent frequency of occurrence for various forage items found in stomach contents of northern pike, sauger, smallmouth bass, and walleye collected in experimental gill nets in Fort Peck Reservoir 2017. Sample size is given in parentheses.

	Northern pike	Sauger	Smallmouth bass	Walleye
Forage items	(<i>N</i> =181)	(N=12)	(<i>N</i> =80)	(N=286)
Chinook salmon	0.6%			
Cisco	13.8%	16.7%	5.0%	6.3%
Crayfish	6.1%	0.0%	13.8%	
Empty	66.9%	75.0%	41.3%	51.4%
Invertebrates	2.8%	8.3%	8.8%	19.2%
Northern pike			1.3%	
Smallmouth bass	1.1%			
Spottail shiner				0.3%
Unknown	5.5%		30.0%	22.4%
Yellow perch	3.3%			0.3%

BEACH SEINING

Shoreline beach seining was conducted to determine reproductive success of age-0 game and non-game fish from August 6th to August 30th, 2017. Seine hauls at 100 standardized locations throughout the reservoir captured 18 species of young-of-year and forage fish for a total of 17,521 fish (Table 10). Overall, relative abundance increased from 63.1 fish per seine haul in 2016 to 161.8 fish per seine haul in 2017 which is near the long-term average of 159 fish per seine haul. Relative abundance of shoreline forage typically follows changes in reservoir elevations (Figure 15). In 2017, reservoir elevations increased gradually from late winter into summer. Reservoir elevations increased approximately six feet from March to July due to reduced discharges and runoff from mountain snowpack (Figure 14). Some terrestrial vegetation was inundated beginning in late spring/early summer of 2017.

Eurasian watermilfoil (EWM) was first discovered in Fort Peck Reservoir by Montana Fish, Wildlife & Parks and the U.S. Army Corp of Engineers in 2010. Since then, it has become established throughout the reservoir. EWM was documented at 64% of the sites in 2016 and 54% of the seining sites in 2017. The similarity between years could be attributed to stable to slightly increaseing reservoir elevations from 2016-2017. Prior to this, reservoir elevations fluctuated greatly. In contrast, reservoir elevations during 2012-2013 experienced a loss of 15 feet resulting in EWM present at 46% of the seining sites. Furthermore, a gain of 10 feet was observed in 2013-2014 and only 24% of the seining sites contained EWM. It appears these fluctuations make it difficult for EWM to become established in littoral areas of the reservoir.

It is uncertain what impacts EWM have to the fishery on Fort Peck Reservoir. Some studies have suggested slow growth and poor size structure for some fish species (Unmuth et al. 1999). In contrast, EWM has proved beneficial to fisheries if it occurs in lakes that typically do not support much growth of native submersed species (Engel 1995). Similarly, Pratt and Smokorowski (2003) found more fish and invertebrates in areas with EWM than areas devoid of any submerged aquatic vegetation. Due to Fort Peck Reservoir's fluctuating reservoir elevation, lack of native submerged aquatic vegetation, and complex basin characteristics, it is possible that EWM may provide spawning and rearing habitat for some forage and/or game fish species.

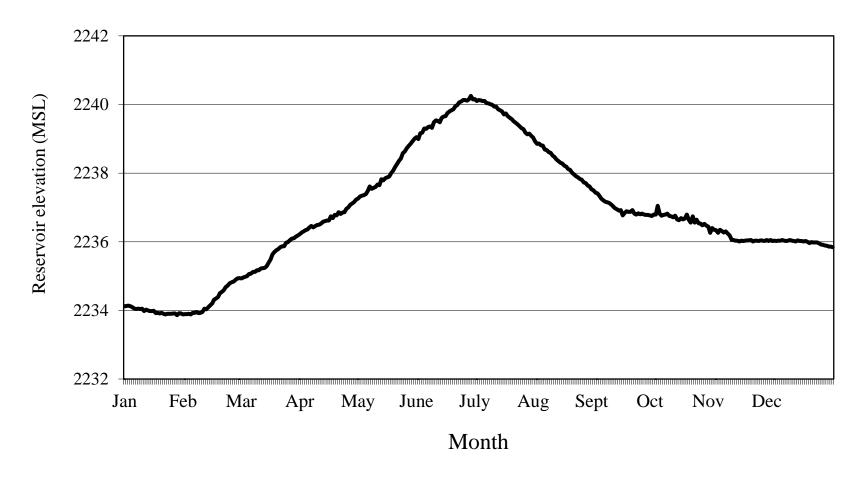


Figure 14. Average daily reservoir elevation for Fort Peck Reservoir from January 1, 2017 to December 31, 2017 (data provided by USACE).

Table 10. Number (*N*) and mean catch per unit effort (CPUE; No./haul) for fish species collected by seine hauls in Fort Peck Reservoir during August-September 2017. Catches are for young-of-year fishes except where noted.

	U1	BD^1	LI	$3D^2$	LN	MA^3	MI	MA^4	UN	MA^5	To	tal
Species	N	CPUE	N	CPUE								
Black bullhead	1078	53.9	0		0		0		0		1078	10.8
Bluegill	0		0		6	0.3	2	0.1	8	0.4	16	0.2
Cisco	0		0		1	< 0.1	0		0		1	< 0.1
Common carp	4	0.2	1	< 0.1	8	0.4	5	0.3	0		18	0.2
Emerald shiner*	119	6.0	4	0.2	1,591	79.6	49	2.5	959	48.0	2722	27.2
Freshwater drum	0		0		0		4	0.2	0		4	< 0.1
Green sunfish	0		0		0		1	< 0.1	8	0.4	9	0.1
Hybognathus spp.*	0		0		0		0		1	< 0.1	1	< 0.1
Largemouth bass	0		0		1	< 0.1	0		0		1	< 0.1
Northern pike	11	0.6	19	1.0	20	1.0	11	0.6	6	0.3	67	0.7
Pomoxis spp.	6	0.3	1	< 0.1	128	6.4	947	47.4	1,722	86.1	2,804	28.0
Pumpkinseed	0		0		0		0		9	0.5	9	0.1
Sauger	0		0		0		0		1	0.1	1	< 0.1
Shorthead redhorse	0		0		0		0		2	0.1	2	< 0.1
Smallmouth bass	15	0.8	3	0.2	36	1.8	41	2.1	35	1.8	130	1.3
Smallmouth buffalo	0		0		0		0		1	< 0.1	1	< 0.1
Spottail shiner*	453	22.7	1,727	86.4	980	49.0	4215	210.8	1392	69.6	8767	87.7
Yellow perch	447	22.4	209	10.5	336	16.8	668	33.4	230	11.5	1890	18.9
Total	2,133	106.7	1,964	98.2	3,107	155.4	5,943	297.2	4,374	218.7	17,521	175.2

^{*}Includes all ages.

¹Upper Big Dry (UBD): Nelson Cr., Lone Tree Cr., McGuire Cr., Bug Cr., Lost Cr.

²Lower Big Dry (LBD): Box Cr., S. Fork Rock Cr., N. Fork Rock Cr., Box Elder Cr., Sand Arroyo, Spring Cr.

³Lower Missouri Arm (LMA): Spillway Bay, Bear Cr., N.Fork Duck Cr., S. Fork Duck Cr., Main Duck

⁴Middle Missouri Arm (MMA): Pines, Gilbert Cr., Cattle Crooked Cr., Hell Cr., Sutherland Cr., Snow Cr.

⁵Upper Missouri Arm (UMA): Bone Trail, Timber Cr., Seven Blackfoot, Fourchette Bay, Devils Cr.

Yellow Perch

Young-of-year yellow perch relative abundance in 2017 was 18.9 per seine which was a slight increase compared to 2016 (Figure 15). Increases in reservoir elevation beginning in March appear to have provided some spawning and rearing habitat as some terrestrial vegetation was inundated in 2017. This would explain the slight increase in relative abundance of young-of-year yellow perch. Nelson and Walburg (1977) determined that newly flooded vegetation was the most important factor affecting year-class strength of yellow perch in two large Missouri River reservoir systems. Relative abundance of young-of-year yellow perch in 2017 was still lower when compared to the high-water years (i.e., 2009-2012; Figure 15). Yellow perch were most abundant in the middle Missouri arm with a catch rate of 33.4 per seine haul in 2017 (Table 10).

Crappie

Young-of-year crappie relative abundance decreased slightly from 43.2 per seine haul in 2016 to 28.0 per seine haul in 2017. Unlike young-of-year yellow perch, relative abundance of young-of-year crappie remains higher than during the drought years (Figure 15). Crappie were most abundant in the upper Missouri arm with a catch rate of 86.1 per seine haul (Table 10). Typically, the upper Missouri arm contains a majority of the young-of-year crappie captured due to more suitable spawning and rearing habitat (i.e., submerged brush and aquatic macrophytes).

Emerald Shiner

Emerald shiner relative abundance in 2017 was 27.2 per seine haul, which was higher than 3.0 per seine haul in 2016. However, relative abundance of emerald shiners has been relatively low over the last several years making them similar to the mid to late 1990's when reservoir elevations were relatively high or increasing (Figure 15). A possible explanation for these decreases could be upstream movement into more riverine type habitat. In 2017, 35% of the emerald shiners were captured in the upper Missouri arm (Table 10).

Spottail Shiner

Relative abundance of spottail shiners increased from 7.0 per seine haul in 2016 to 87.7 per seine haul in 2017 and was slightly higher than long-term average of 75 per seine haul. The increase in relative abundance could be explained by rising reservoir elevations beginning in March and continuing into June which inundated shoreline vegetation. Relative abundance has been shown to increase during rising reservoir elevations in late spring/early summer (Figure 15). Spottail shiner Relative abundance was highest in the lower Big Dry arm at 86.4 per seine haul (Table 10). Typically, relative abundance is higher in main lake portions (i.e., lower Big Dry arm, lower Missouri arm, middle Missouri arm) of the reservoir.

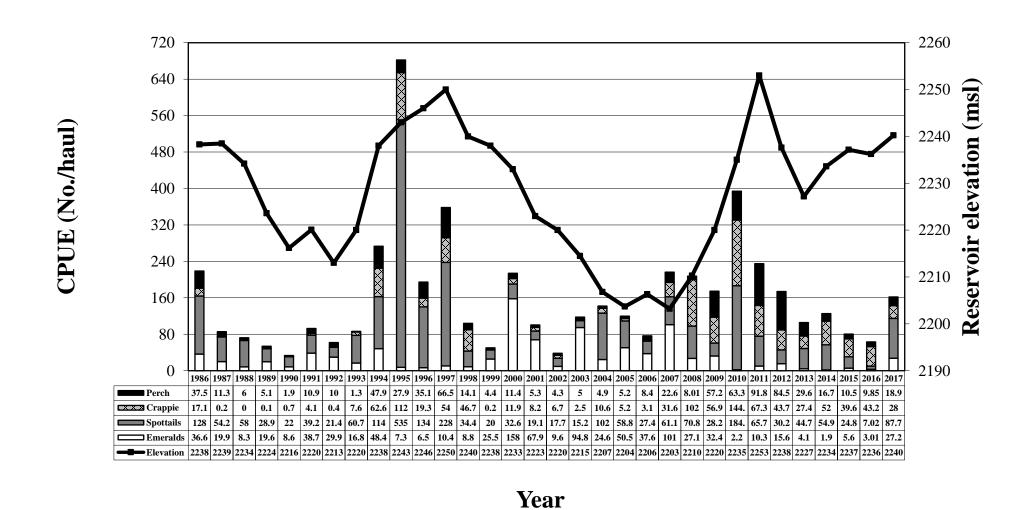


Figure 15. Maximum annual reservoir elevation compared to mean catch per unit effort (CPUE; No./haul) of emerald, spottail, young-of-year yellow perch, and young-of-year crappie collected by seine hauls in Fort Peck Reservoir from 1986-2017.

Chinook salmon

A total of 345,386 spring-stocked chinook salmon were released into Fort Peck Reservoir during late May/early June of 2017 at 25-39 per pound. This exceeded the management goal of 200,000 fingerlings as outlined in the Fort Peck Reservoir Fisheries Management Plan (Headley et al. 2012). Compared to previous years, the spring-stocked fish were reared to a larger size in an attempt to create salmon large enough to avoid predation (Table 11). Both North and South Dakota Game and Fish have used this strategy and been successful in developing a return run from larger spring-stocked chinook salmon (Lott et al. 1997). In the past, Montana has typically stocked fewer fingerlings and less total pounds than North and South Dakota. Montana has increased stocking numbers and/or size in efforts to create a more stable fishery and more fish for spawning beginning in 2000 (Figure 16 and 17).

Return of salmon to the release site has been variable over the years. In 2017, the number of females spawned and eggs collected decreased greatly from the previous year (Figure 18). However, the 2017 egg-take effort for Montana resulted in 791,000 green eggs which was the second most eggs collected since the salmon program began. In addition, fecundity of female salmon increased from 3,692 eggs per female in 2016 to 3,995 eggs per female in 2017. The increase in fecundity can be attributed to a larger, older age group (age-4) captured in 2017. In addition, egg size was larger than compared to previous years which likely led to better hatching success and eye-up at the Fort Peck Hatchery (Wade Geraets, personal communication).

Fisheries personnel relied exclusively on electrofishing to obtain brood stock for the annual chinook salmon egg-take in 2017. This has proven to be a more cost effective and efficient manner due to limited time and manpower issues as opposed to the fish ladder. Electrofishing was conducted from October 6th to October 24th in various embayments adjacent to the marina, spillway, and Duck Creek.

Biological data was collected from adult chinook salmon during spawning to provide more information on age, growth, and stocking-and-rearing history. In 2016, only 3% of females spawned were 4-year old (Table 12). In contrast, 99% of females spawned in 2017 were 4-year old. This was due to a strong year-class that continued to grow and mature from a very successful stocking effort in 2014. It should be noted that a high number of younger, mature male salmon were observed and captured in 2015 when compared to previous years suggesting a strong year class present. Age-2 male salmon comprised 84% of all males captured during the 2015 egg collection efforts. The earlier maturity observed for males in 2015 and females in 2016 could be attributed to improved growing conditions (i.e., increases in cisco abundance) which would allow more energy to be allocated to gonad production instead of somatic growth. Lott et al. (1997) noted a similar trend with chinook salmon age classes in Lake Oahe, SD when rainbow smelt populations, which are the primary forage, were at peak abundances.

Mean weight of pre-spawn female chinook salmon increased from 13.2 pounds in 2016 to 16.3 pounds in 2017. When examining mean weight at each age, age-4 male and female salmon collected in 2017 were slightly larger than those collected in 2016 (Table 12; Table 13). Four-year old females averaged 16.4 pounds in 2017 compared to 15.7 pounds in 2016. The higher relative abundance of cisco beginning in 2013 and continuing into 2017 has contributed to increased weights at age-2 males as well as the improved numbers observed. Cisco have been found to be the primary forage item of age 1+ chinook salmon in Fort Peck Reservoir (Brunsing 1998; Headley 2010).

Table 11. Chinook salmon stocked by number, size, and location in Fort Peck Reservoir, 2008-2017.

Date	Number	Pounds Stocked	No./lb	Mark	Location
6/5/2008	60,482	1,960	30.86	None	Marina Bay
6/11/2008	35,100	716	49	None	Marina Bay
6/12/2008	30,900	1,000	30.9	None	Marina Bay
8/12/2008	12,913	683	18.9	None	Marina Bay
8/12/2008	15,291	823	18.58	None	Marina Bay
11/18/2008	4,402	823	5.35	Adipose Clip	Marina Bay
6/16/2009	188,906	5,145	36.71	None	Marina Bay
11/4/2009	56,513	7,859	7.19	Adipose Clip	Marina Bay
6/10/2010	143,966	4,223	34.09	None	Marina Bay
10/22/2010	23,801	3,365	7.1	Adipose Clip	Marina Bay
6/10/2011	108,760	1,729	62.9	None	Duck Creek
6/10/2011	108,706	1,828	59.4	None	Pines Bay
6/15/2011	38,026	561	67.8	None	Rock Creek
11/1/2011	38,605	6,893	5.6	Adipose Clip	Marina Bay
6/4/2012	55,366	1,700	32.6	None	Duck Creek
6/4/2012	50,203	1,512	33.2	None	Bear Creek
6/5/2012	75,750	2,320	32.6	None	Marina Bay
6/6/2013	11,247	530	21.2	Adipose Clip	Marina Bay
6/6/2013	15,915	750	21.2	Adipose Clip	Milk Coulee Bay
6/10/2013	33,772	1,018	34	None	Duck Creek
6/10/2013	59,870	1,878	33.4	None	Marina Bay
6/10/2013	30,892	987	32.1	None	Milk Coulee Bay
6/2/2014	32,173	663	35.2	None	Marina
6/2/2014	32,137	915	35.1	None	Milk Coulee Bay
6/2/2014	25,040	714	35.1	None	Duck Creek
6/3/2014	31,123	1,350	23	Adipose Clip	Marina Bay
6/3/2014	15,213	660	21.2	Adipose Clip	Milk Coulee Bay
6/9/2014	42,868	1,261	34	None	Marina
6/9/2014	17,084	502	34	None	Milk Coulee Bay
6/9/2014	35,202	1,034	34	None	Duck Creek
6/8/2015	27,224	1,131	24.1	None	Milk Coulee Bay
6/8/2015	27,310	1,134	24.1	None	Marina
6/6/2016	25,357	1,018	24.9	None	Milk Coulee Bay
6/6/2016	31,307	1,257	24.9	None	Marina
5/23/2017	41,916	1,062	38.9	None	Duck Creek
5/23/2017	29,732	806	38.1	None	Marina Bay
5/23/2017	38,989	1,037	38.9	None	Milk Coulee Bay
5/30/2017	25,111	728	34.5	None	Duck Creek
5/30/2017	20,663	599	34.5	None	Marina Bay
5/30/2017	7,015	203	34.5	None	Milk Coulee Bay
5/31/2017	50,412	1,387	36.6	None	Duck Creek
5/31/2017	12,980	352	36.7	None	Marina Bay
5/31/2017	23,011	607	37.9	None	Milk Coulee Bay
5/31/2017	19,384	715	27.1	Adipose Clip	Marina Bay
6/1/2017	11,703	297	39.3	None	Duck Creek
6/1/2017	21,795	571	38.2	None	Marina Bay
6/1/2017	23,295	601	38.7	None	Milk Coulee Bay
6/1/2017	19,380	750	25.8	Adipose Clip	Marina Bay

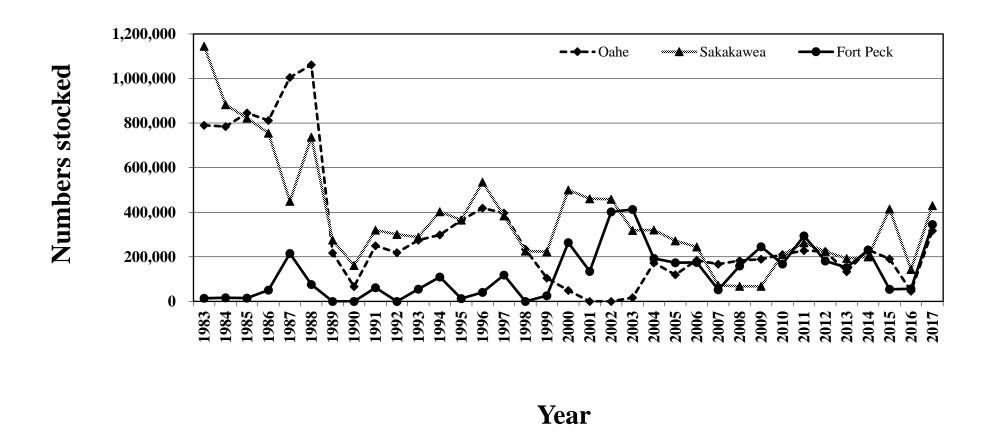


Figure 16. Annual comparison of total chinook salmon numbers stocked in Oahe, Sakakawea, and Fort Peck Reservoir, 1983-2017.

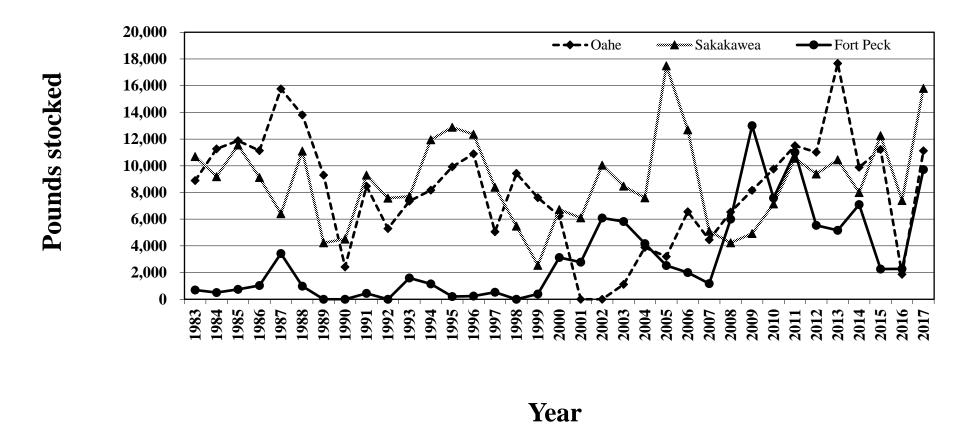


Figure 17. Annual comparison of total chinook salmon pounds stocked in Oahe, Sakakawea, and Fort Peck Reservoir, 1983-2017.

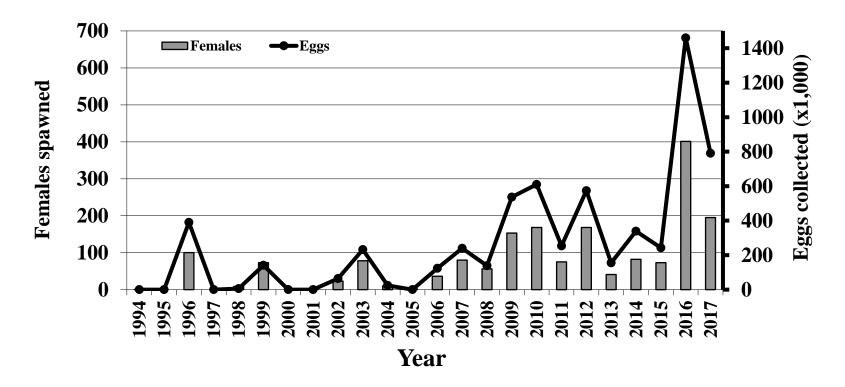


Figure 18. Annual comparison of female chinook salmon spawned and eggs collected from Fort Peck Reservoir, 1994-2017.

Table 12. Age composition, length and weight of 590 chinook salmon collected by electrofishing, fall 2016.

		Brood		Mean length		Mean weight	
Age	Sex	year	Number	(in)	Range	(lb)	Range
1	Male	2015	0				
1	Female	2013	0				
2	Male	2014	0				
	Female		0				
3	Male	2013	161	31.7	24.8-36.0	12.7	5.5-18.2
	Female		411	30.3	23.0-35.3	13.2	4.6-18.2
4	Male	2012	4	33.8	32.7-35.8	15.0	13.0-17.
	Female		14	32.1	29.6-35.0	15.7	11.2-22.
5	Male	2011	0				
	Female		0				

Table 13. Age composition, length and weight of 318 chinook salmon collected by electrofishing, fall 2017.

		Brood		Mean length		Mean weight	
Age	Sex	year	Number	(in)	Range	(lb)	Range
1	Male	2016	0				
	Female		0				
2	Male	2015	2	23.1	22.7-23.6	6.5	5.6-7.4
2		2013		23.1	22.7-23.0	0.5	3.0-7.4
	Female		0				
3	Male	2014	18	27.4	23.2-30.5	9.2	6.2-11.9
	Female		1	27.9		10.5	
4	Male	2013	77	33.2	25.3-38.8	15.2	6.2-26.2
	Female		220	32.8	26.2-37.8	16.4	4.2-26.7
5	Male	2012	0				
3		2012					
	Female		0				

Cisco Vertical Gill Netting

Young-of-year cisco

Relative abundance of young-of-year cisco in Fort Peck Reservoir increased to 120 per net-night in 2017; similar to 126 per net-night in 2016. This was above the long-term average of 80 per net-night from 1986 to 2017. Young-of-year cisco relative abundance has fluctuated over the years on Fort Peck Reservoir and similar trends have been observed in other reservoirs where cisco populations occur (Dave Yerk, personal communication; Figure 19).

Limited ice cover appears to correlate with decreases in young-of-year cisco relative abundance on Fort Peck Reservoir. Duration of ice cover has been shown to reduce the wind and wave action, which decreases sedimentation over incubating eggs, and ultimately reduces mortality (Freeberg et al. 1990; Rook et al. 2013). For example, in 1987 and 1992 the reservoir did not freeze over and resulted in very few young-of-year cisco captured. In contrast, ice cover occurred on December 13th, 1985 and December 21st, 2000 resulting in two of the largest year classes ever produced. Ice cover occurred on January 3rd and receded on April 3rd, 2017 resulting in a moderately high year class.

Decreases in reservoir elevation could also explain reductions in young-of-year cisco on Fort Peck Reservoir. Decreases in reservoir elevation, which dewater incubating eggs, have been shown to reduce to young-of-year cisco abundance in other reservoir systems (Gaboury and Patalas 1984; Zollweg and Leathe 2006). For example, large decreases in reservoir elevation during 1989, 1996, 2003, and 2007 resulted in low relative abundance of young-of-year cisco (Figure 19). In contrast, when water levels were increasing over winter of 1993-1994 and again in 2008-2009, two of the best year classes of cisco were produced. Reservoir elevations decreased 0.1 feet during the 2016-2017 winter months. It is possible that the combination of ice cover and stable reservoir elevations influenced the moderate to high relative abundance of young-of-year cisco in 2017.

Adult cisco

Additional mesh sizes (¾, 1, 1 ¼, 1 ½-in) were incorporated in 2013 vertical gill netting efforts in an attempt to provide additional information on the adult cisco population in Fort Peck Reservoir. This technique has been used successfully on other water bodies that contain cisco and other pelagic species (Dave Yerk, personal communication). The large year classes of cisco produced in 2013 and 2014, which were observed in the ½-in mesh, appear to have recruited to the population as indicated by the increase in relative abundance of cisco captured in the ¾-in mesh from 2015-2016 (Figure 20). When examining length frequencies, a similar trend appears with age-0 fish ranging from 110 to 130 mm in 2014 and then from 170 mm to 190 mm as age-1 fish in 2015 (Figure 21).

Mean length for cisco captured by vertical gill nets in Fort Peck Reservoir during 2017 was 4.7, 8.5, 9.2, and 8.6 for ¾, 1, 1¼-in mesh, respectively. No cisco were captured in 1½-in mesh during 2017. Overall, relative weight of cisco captured in 2017 was 73 which has been similar over the last several years during this sampling period. The high abundance of adult cisco and low relative weights would suggest intraspecific competition. Rook et al. (2013) observed similar trends with cisco in Lake Superior and also found a negative correlation to post year class survival. Currently, it is uncertain what impacts these large year classes are having on the overall zooplankton density and composition in Fort Peck Reservoir because long-term zooplankton data is unavailable. Large year classes of cisco have been shown to alter the zooplankton community by selecting for the largest zooplankters in the system (Rudstrum et al. 1993).

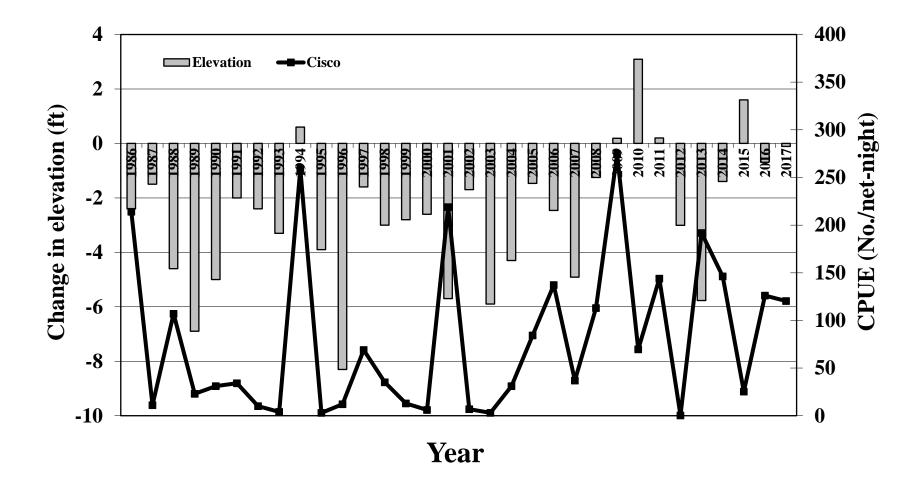


Figure 19. Change in reservoir elevation from December high to March low in contrast to mean CPUE (No./net-night) of young-of-year cisco collected in vertical gill nets on Fort Peck Reservoir, 1986-2017.

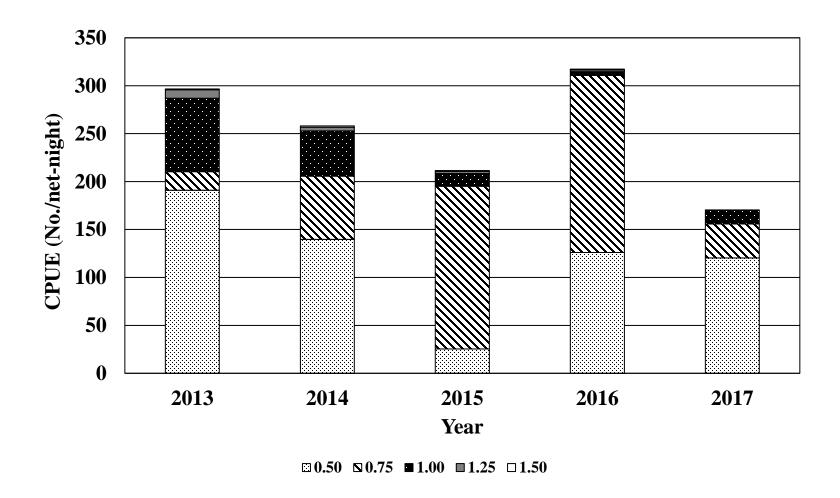


Figure 20. Mean CPUE (No./net-night) of cisco by mesh size collected in vertical gill nets on Fort Peck Reservoir, 2013-2017.

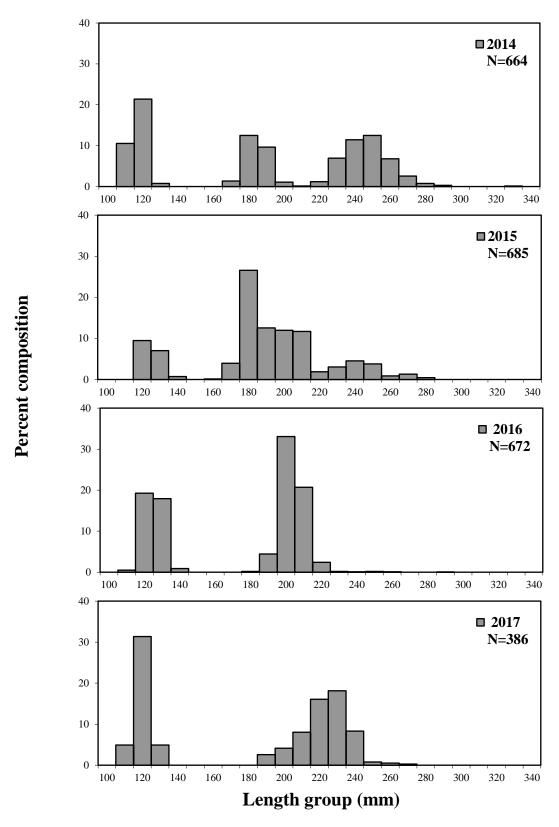


Figure 21. Length frequency of subsampled cisco collected by vertical gill nets in Fort Peck Reservoir during September, 2014-2017.

RECOMMENDATIONS

- Spring trapping of walleye and northern pike will continue to provide an egg source for sustaining Fort Peck Reservoir and sport fisheries in and out of state.
- Provide walleye eggs to Fort Peck Hatchery staff to develop methods to produce sterile walleye.
- Annual standardized sampling with modified fyke nets, experimental gill nets, vertical gill nets and beach seines will continue to obtain relative abundance data on game and forage fish distribution, abundance, production and condition.
- Evaluate native species (sauger, channel catfish, burbot) more closely by continuing to collect additional length, weight, and age information during routine sampling.
- Reservoir water levels will be monitored to determine impacts to the overall fishery. Information will be utilized to make recommendations to Corps of Engineers for Annual Operating Plan in conjunction with the Missouri River Natural Resource Committee.
- Continue working with South Dakota and North Dakota to develop a stronger tri-state chinook salmon fishery. This may require traveling out of-state to help collect and spawn salmon to receive additional eggs or collection of eggs from Fort Peck to support North and South Dakota needs.
- An evaluation of stocking strategies indicates the size of salmon released is more important than the timing of release. Efforts should be made to increase the numbers of total pounds stocked as opposed to total numbers of fish.
- Continue efforts to spawn Fort Peck salmon when numbers of adults permit. Adults should be captured with the aid of an electrofishing boat due to time and manpower constraints.
- Continue to evaluate the use of deepwater summer gill netting surveys to determine relative abundance and population dynamics of lake trout.
- Continue young-of-year and adult cisco standardized monitoring (vertical gill netting) to further explore the population dynamics of this species. Work to develop age structure and growth information for adult cisco.
- Continue annual public informational meetings and press releases to disseminate information from the previous year's work and to discuss stocking goals and work plans for the coming year.
- Continue transferring or entering historical data to create a full database of all documented work with Fort Peck's fishery while ensuring data is proofed and error checked.
- Continue limnological sampling program for Fort Peck Reservoir and collect water samples for "baseline" information to use in conjunction with walleye otolith microchemistry study. Evaluate chemical marking of hatchery-reared walleye fry for the use of otolith microchemistry.

LITERATURE CITED

- Anderson, R. O. and A. S. Weithman. 1978. The concept of balance for coolwater fish populations. Pages 371-378 in R. L. Kendall, editor. Selected coolwater fishes of North America. American Fisheries Society, Bethesda, Maryland.
- Anderson, R. O. 1980. Proportional stock density (PSD) and relative weight (*Wr*): interpretive indices for fish populations and communities. Pages 27-33 *in* S. Gloss and B. Shupp, editors. Practical fisheries management: more with less in the 1980's. New York Chapter American Fisheries Society, Ithaca.
- Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison.
- Bellgraph, B. J., C. S. Guy, W. M. Gardner, and S. A. Leathe. 2008. Competition potential between saugers and walleyes in nonnative sympatry. Transactions of the American Fisheries Society 137:790-800.
- Billington, N., R.N. Koigi, and J. Xiong. 2005. Genetic variation and hybridization with walleye in Montana sauger populations determined by protein electrophoresis. Report of Troy State University to Montana Department of Fish, Wildlife and Parks, Helena.
- Brown, M. L., F. Jaramillo, J., D. M. Gatlin, III, and B. R. Murphy. 1995. A revised standard weight (*Ws*) equation for channel catfish. Journal of Freshwater Ecology 10:295-302.
- Brunsing, M. 1998. Fort Peck Reservoir study, Montana Department of Fish, Wildlife & Parks, Fisheries Division, Annual report, Helena.
- Derback, B. 1947. The adverse effect of cold weather upon the successful reproduction of pickerel, Stizostedion vitreum vitreum, in Heming Lake, Manitoba in 1947. Canadian Fish Culturist 2:22-23.
- Engel, S. 1995. Eurasian Watermilfoil as a fishery management tool. Fisheries 20:20-27.
- Erickson, C. M. 1983. Age determination of Manitoban walleyes using otoliths, dorsal spines, and scales. North American Journal of Fisheries Management 3:176-181
- Fielder, D. G. 1992. Evaluation of stocking walleye fry and fingerlings and factors affecting their success in lower Lake Oahe, South Dakota. North American Journal of Fisheries Management 12:336-345.
- Freeberg, M. H., W. W. Taylor, and R. W. Brown. 1990. Effect of egg and larval survival on year-class strength of lake whitefish in Grand Traverse Bay, Lake Michigan. Transactions of the American Fisheries Society 119: 92-100.
- Gablehouse, D. W., Jr., 1984. A length-categorization system to assess fish stocks. North American Journal of Fisheries Management 4:273-285.
- Gaboury, M. N. and J. W. Patalas. 1984. Influence of water level drawdown on the fish populations in Cross Lake, Manitoba. Canadian Journal of Fisheries and Aquatic Sciences. 41:118-125.
- Guy, C. S., R. M. Neumann, D. W. Willis, and R. O. Anderson. 2007. Proportional size distribution (PSD): A further refinement of size structure index terminology. Fisheries 32:348.
- Headley, H. C. 2007. Statewide fisheries investigations, Fort Peck Reservoir Study. Montana Fish Wildlife and Parks, Fisheries Division, Annual report, Helena.

- Headley, H. C. 2010. Statewide fisheries investigations, Fort Peck Reservoir Study. Montana Fish Wildlife and Parks, Fisheries Division, Annual report, Helena.
- Headley, H.C., S. Dalbey, and D. Skaar. 2012. Fort Peck Reservoir Fisheries Management Plan 2012-2022. Montana Fish Wildlife and Parks, Fisheries Division.
- Isermann, D. A., J. R. Meerbeek, G. D. Scholten, and D. W. Willis. 2003. Evaluation of three different structures used for walleye age estimation with emphasis on removal and processing times. North American Journal of Fisheries Management 23:625-631.
- Kerr, S. J. 2011. Stocking and marking: Lessons learned over the past century. Pages 423-449 *in* B. A. Barton, editor. Biology, management, and culture of walleye and sauger. American Fisheries Society, Bethesda, Maryland.
- Leathe, S. A. and P. J. Graham. 1982. Flathead Lake fish food habits study-Final report. Montana Department of Fish, Wildlife and Parks, Kalispell, Montana. 137p.
- Liebelt, J. 1979. Establishment of Aquatic Baselines in Large Inland Impoundments. National Marine Fisheries Service, U.S. Dept. of Commerce, NOAA.
- Lott, J., G. Marrone, D. Stout. 1997. Influences of size-and-date at stocking, imprinting attempts and growth on initial survival, homing ability, maturation patterns and angler harvest of Chinook salmon in Lake Oahe, SD. South Dakota Department of Game, Fish and Parks, Wildlife Division, Report 97-20, Pierre.
- Martin, D. B., L. J. Mengel, J. F. Novotny, and C. H. Walburg. 1981. Spring and summer water levels in a Missouri River Reservoir: Effects on age-0 fish and zooplankton. Transactions of the American Fisheries Society 110:370-381.
- McMahon, T. E., and W. M. Gardner. 2001. Status of sauger in Montana. Intermountain Journal of Sciences 7:1-21.
- Mullins, M. S. 1991. Biology and predator use of cisco (*Coregonus artedi*) in Fort Peck Reservoir, Montana. Master's thesis. Montana State University, Bozeman.
- Murphy, B. R., M. L. Brown, and T. A. Springer. 1990. Evaluation of the relative weight (*W_T*) index, with new applications to walleye. North American Journal of Fisheries Management, 10:85-97.
- Nelson, W. R., and C. H. Walburg. 1977. Population dynamics of yellow perch (*Perca flavescens*), sauger (*Stizostedion canadense*), and walleye (*Stizostedion vitreum*) in four main stem Missouri River reservoirs. Journal of the Fisheries Research board of Canada 34:1748-1763.
- Nielsen, L. A., D. L. Johnson, and S. S. Lampton. 1989. Fisheries techniques. American Fisheries Society, Bethesda, Maryland.
- Paragamian, V. L., and R. Kingery. 1992. A comparison of walleye fry and fingerling stockings in three rivers in Iowa. North American Journal of Fisheries Management 12:313-320.
- Pratt, T. C., and K. E. Smokorowski. 2003. Fish habitat management implications of the summer habitat use by littoral fishes in a north temperate, mesotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 60:286-300.
- Rook, B. J., M. J. Hansen, and O. T. Gorman. 2013. Biotic and abiotic factors influencing cisco recruitment dynamics in Lake Superior during 1978-2007. North American Journal of Fisheries Management 33:1243-1257.

- Rudstrum, L. G., R. C. Lathrop, and S. R. Carpenter. 1993. The rise and fall of dominant planktivore: direct and indirect effects on zooplankton. Ecology 74:303-319.
- Ruggles, M. P. 2005. Statewide fisheries investigations, Fort Peck Reservoir Study. Montana Fish, Wildlife and Parks, Fisheries Division, Annual report, Helena.
- Secor, D. H., J. M. Dean, and E. L. Laban. 1992. Otolith removal and preparation for microstructural examination. Pages 19-57 *in* D. K. Stevenson, and S. E. Campana, editors. Otolith microsturucre examination and analysis. Canadian Special Publication of Fisheries and Aquatic Sciences No. 117.
- Sellers, T. J., B. R. Parker, D. W. Schindler, and W. M. Tonn. 1998. Pelagic distribution of lake trout in small Canadian Shield lakes with respect to temperature, dissolved oxygen, and light. Canadian Journal of Fisheries and Aquatic Sciences 55:170-179.
- Scott, W. B., and E. J. Crossman. 1973. The freshwater fishes of Canada. Fisheries Research Board of Canada, Ottawa.
- United States Army Corp of Engineers. 2009. Water Quality Modeling Report. Application of the CE-QUAL-W2 hydrodynamic and water quality model to Fort Peck Reservoir, Montana. Omaha, Nebraska.
- United States Army Corp of Engineers, Omaha District. 2015. Missouri River Mainstem System 2015-2016 Annual Operating Plan.
- Unmuth, J. M. L., M. J. Hansen, and T. D. Pellet. 1999. Effects of mechanical harvesting Eurasian watermilfoil on largemouth bass and bluegill population in Fish Lake, Wisconsin. North American Journal of Fisheries Management 19:1089-1098.
- Vokoun, J. C., C. F. Rabeni, and J. S. Stanovick. 2001. Sample-size requirements for evaluating population size structure. North American Journal of Fisheries Management 21:660-665.
- Wiedenheft, W. 1985. Development and management of commercial fishing practices in Fort Peck Reservoir. National Marine Fisheries Service, U.S. Department of Commerce, NOAA.
- Willis, D. W. 1989. Proposed standard length-weight equation for northern pike. North American Journal of Fisheries Management 9: 203-208.
- Zollweg, C. E., and S. Leathe. 2000. Tiber Cisco Spawning Study. Montana Fish, Wildlife and Parks, Fisheries Division, Project report, Helena.

Prepared by: Heath Headley

Date: April 6th, 2018

Appendix 1. Common and scientific names of fishes mentioned in this report.

Common Name	Scientific name
Bigmouth buffalo	Ictiobus cyprinellus
Black bullhead	Ictalurus melas
Black crappie	Pomoxis nigromaculatus
Brassy minnow	Hybognathus hankinsoni
Brook stickleback	Culaea inconstans
Brown trout	Salmo trutta
Burbot	Lota lota
Channel catfish	Ictalurus punctatus
Chinook salmon	Oncorhynchus tshawytscha
Cisco	Coregonus artedii
Common carp	Cyprinus carpio
Creek chub	Semotilus atromaculatus
Emerald shiner	Notropis atherionoides
Fathead minnow	Pimephales promelas
Flathead chub	Hybopsis gracilis
Freshwater drum	Aplodinotous grunniens
Goldeye	Hiodon alosoides
Green sunfish	Lepomis cyanellus
Lake chub	Couesius plumbeus
Lake trout	Salvelinus namaycush
Largemouth bass	Micropterus salmoides
Northern pike	Esox lucious
Paddlefish	Polyodon spathula
Pallid sturgeon	Scaphirhynchus albus
Plains minnow	Hybognathus placitus
Rainbow trout	Oncorhynchus mykiss
River carpsucker	Carpoides carpio
Sauger	Sander canadense
Shorthead redhorse	Moxostoma macrolepidotum
Shovelnose sturgeon	Scaphiryhynchus platorynchus
Silvery minnow	Hybognathus argyritis
Smallmouth bass	Micropterus dolemieu
Smallmouth buffalo	Ictiobus bubalus
Spottail shiner	Notropis hudsonius
Walleye	Sander vitreum
White crappie	Pomoxis annularis
White sucker	Catostomus commersoni
Yellow perch	Perca flavescens

Appendix 2. Number of walleye stocked in Fort Peck Reservoir during 2017 by date, region, location, and size.

Date	Location	Region	Fry	Fingerling	Hatchery
5/12/2017	McGuire Creek	UBD	5,566,663		Fort Peck
5/16/2017	Little Bug Creek	UBD	6,000,000		Fort Peck
6/9/2017	Bug Creek	UBD		68,489	Miles City
6/9/2017	Lost Creek	UBD		68,490	Miles City
6/14/2017	Nelson Creek	UBD		118,373	Miles City
6/16/2017	Nelson Creek	UBD		132,123	Miles City
5/8/2018	Nelson Creek	UBD	6,000,000		Fort Peck
6/2/2017	North Fork Rock Creek	LBD		198,069	Miles City
6/15/2017	North Fork Rock Creek	LBD		180,241	Miles City
5/17/2017	Milk Coulee	LMA	841,657		Fort Peck
6/14/2017	Duck Creek Ramp	LMA		88,026	Fort Peck
6/15/2017	Milk Coulee	LMA		41,911	Fort Peck
6/16/2017	Milk Coulee	LMA		190,760	Fort Peck
6/16/2017	Duck Creek Ramp	LMA		37,434	Fort Peck
6/20/2017	Marina Bay	LMA		48,413	Fort Peck
6/28/2017	Bear Creek	LMA		16,994	Fort Peck
7/18/2017	Duck Creek Ramp	LMA		4,157*	Fort Peck
5/1/2017	Hell Creek	MMA	5,000,000		Miles City
5/8/2017	Hell Creek	MMA	6,800,000		Miles City
6/7/2017	Cattle/Crooked Creek	MMA		226,760	Miles City
6/8/2017	Hell Creek	MMA		264,692	Miles City
6/15/2017	Pines Bay	MMA		96,987	Fort Peck
6/19/2017	Upper Duck Coulee	MMA		55,249	Fort Peck
6/19/2017	Middle Eighth Coulee	MMA		55,250	Miles City
Total			30,208,320	1,892,418	

¹Upper Big Dry (UBD), Lower Big Dry (LBD), Lower Missouri Arm (LMA), Middle Missouri Arm (MMA). * Denotes advanced fingerlings.

Appendix 3. Temperature (°C), dissolved oxygen (mg/L), pH (standard units), turbidity (NTU), and total dissolved solids (g/L), profiles by month at Bug Creek site, Fort Peck Reservoir, 2017.

Depth	Temperature	Dissolved	pН	Turbidity	TDS	Depth	Temperature	Dissolved	pН	Turbidity	TDS
(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)	(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)
		May						June			
0	11.2	9.1	9.0	1.8	0.462	0	17.4	7.8	9.1	2.2	0.475
10	10.9	9.2	9.0	2.4	0.462	10	17.3	7.8	9.1	2.3	0.474
20	10.8	9.1	9.0	2.1	0.462	20	17.3	7.9	9.1	1.8	0.475
30	10.8	9.2	9.0	2.2	0.461	30	17.2	7.9	9.1	2.6	0.475
40	10.7	9.1	9.0	2.3	0.460	40	16.9	7.7	9.1	3.4	0.474
50	10.6	9.1	9.0	2.8	0.461	50	16.5	7.7	9.1	3.7	0.474
60	9.6	9.2	9.0	3.1	0.461	60	16.1	7.8	9.1	4.5	0.474
		July						August			
0	21.4	7.3	9.2	2.0	0.485	0	20.5	7.3	9.3	2.1	0.487
10	21.3	7.3	9.2	2.2	0.484	10	20.4	7.3	9.4	2.0	0.487
20	20.8	7.4	9.2	2.0	0.483	20	20.3	7.3	9.4	2.2	0.486
30	15.7	7.3	9.1	2.4	0.477	30	20.3	7.2	9.4	2.2	0.486
40	13.7	7.4	9.0	1.9	0.475	40	20.1	7.2	9.3	2.3	0.487
50	13.4	7.4	9.0	1.8	0.475	50	20.1	7.1	9.3	4.0	0.486
60	12.2	7.4	8.9	1.7	0.473	60	16.9	6.0	9.1	4.4	0.478
		September									
0	20.4	7.4	9.4	1.2	0.488						
10	20.2	7.4	9.4	1.6	0.488						
20	20.2	7.3	9.4	1.9	0.488						
30	20.1	7.2	9.4	2.3	0.489						
40	19.9	7.2	9.4	2.5	0.489						
50	19.8	6.9	9.4	3.0	0.490						
60	18.6	5.7	9.2	4.2	0.489						

Appendix 3 continued. Temperature (°C), dissolved oxygen (mg/L), pH (standard units), turbidity (NTU), and total dissolved solids (g/L), profiles by month at Spring Creek site, Fort Peck Reservoir, 2017.

Depth	Temperature	Dissolved	pН	Turbidity	TDS	Depth	Temperature	Dissolved	pН	Turbidity	TDS
(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)	(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)
		May						June			
0	10.2	9.3	8.9	2.5	0.463	0	16.7	8.1	9.1	2.1	0.476
10	9.7	9.4	9.0	2.9	0.464	10	16.6	8.1	9.1	1.8	0.476
20	9.6	9.4	9.0	3.1	0.463	20	16.1	8.1	9.1	2.1	0.476
30	9.4	9.4	9.0	3.9	0.463	30	16.0	8.0	9.1	2.5	0.475
40	9.2	9.5	9.0	3.5	0.463	40	15.9	8.0	9.1	2.3	0.475
50	8.8	9.5	9.0	3	0.463	50	15.9	7.9	9.1	3.2	0.475
60	8.3	9.6	9.0	2.7	0.462	60	15.9	8.0	9.1	3.1	0.475
70	8.2	9.6	9.0	2.6	0.463	70	15.7	7.9	9.1	3.5	0.474
80	8.0	9.6	9.0	2.8	0.462	80	14.3	7.6	9.0	3.8	0.472
90	7.8	9.6	9.0	2.7	0.463	90	9.5	8.4	8.9	1.9	0.468
		July						August			
0	21.2	7.5	9.3	1	0.486	0	20.1	7.4	9.4	1.8	0.486
10	20.6	7.5	9.3	1.2	0.484	10	20.1	7.3	9.4	1.9	0.486
20	20.3	7.6	9.3	2.2	0.484	20	20.0	7.3	9.4	2.2	0.486
30	20.2	7.5	9.2	2.7	0.483	30	19.9	7.3	9.4	2.0	0.486
40	17.7	7.6	9.2	2.9	0.480	40	19.9	7.3	9.4	2.4	0.485
50	17.1	7.5	9.2	2.7	0.480	50	19.7	7.2	9.3	3.8	0.486
60	15.0	7.3	9.1	2.8	0.478	60	17.8	6.5	9.2	6.0	0.483
70	11.2	7.5	9.0	1.8	0.472	70	16.8	6.5	9.2	4.4	0.480
80	10.7	7.7	8.9	1.8	0.472	80	15.3	6.3	9.1	3.9	0.479
90	10.2	7.8	8.9	1.4	0.471	90	13.3	6.4	9.0	3.9	0.478
		September									
0	20.2	7.5	9.4	1.3	0.486						
10	20.1	7.5	9.4	1.5	0.486						
20	20.1	7.4	9.4	2.2	0.486						
30	20.1	7.4	9.4	2.3	0.486						
40	20.0	7.3	9.4	2.5	0.486						
50	19.8	7.2	9.4	3	0.486						
60	19.3	6.5	9.3	3.5	0.485						
70	15.7	5.4	9.1	2.5	0.481						
80	14.1	5.1	9.0	3	0.479						
90	12.6	5.4	9.0	3.4	0.477						

Appendix 3 continued. Temperature (°C), dissolved oxygen (mg/L), pH (standard units), turbidity (NTU), and total dissolved solids (g/L), profiles by month at Haxby site, Fort Peck Reservoir, 2017.

Depth	Temperature	Dissolved	pН	Turbidity	TDS	Depth	Temperature	Dissolved	pН	Turbidity	TDS
(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)	(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)
		May						June			
0	10.6	9.4	8.9	1.6	0.468	0	16.6	8.2	9.1	1.8	0.481
10	10.1	9.5	9.0	2.6	0.468	10	16.6	8.2	9.1	2.3	0.481
20	9.8	9.5	9.0	1.9	0.468	20	16.6	8.1	9.1	2.0	0.481
30	9.2	9.6	9.0	2.3	0.467	30	16.1	8.1	9.1	2.5	0.480
40	8.8	9.7	9.0	2.3	0.467	40	15.5	8.0	9.1	2.6	0.479
50	8.3	9.7	9.0	2.9	0.467	50	15.4	8.0	9.1	2.9	0.479
60	7.2	9.9	9.0	2.3	0.466	60	15.3	8.0	9.1	2.8	0.478
70	7.0	9.8	8.9	2.2	0.465	70	14.7	8.1	9.1	2.7	0.477
80	6.2	9.9	8.9	1.9	0.467	80	12.5	8.2	9.0	2.8	0.471
90	5.8	9.9	8.9	2.2	0.466	90	10.5	8.5	9.0	2.2	0.469
100	5.8	9.9	8.9	1.6	0.467	100	9.3	8.7	8.9	1.7	0.469
110	5.8	9.8	8.9	2.4	0.467	110	8.7	8.8	8.9	1.9	0.468
120	5.7	9.8	8.9	2.3	0.467	120	8.4	8.8	8.9	1.3	0.467
130	5.7	9.8	8.9	1.6	0.468	130	8.3	8.8	8.9	1.0	0.468
140	5.5	9.8	8.9	1.7	0.468	140	8.3	8.8	8.8	1.8	0.468
		July						August			
0	21.8	7.5	9.3	3.3	0.487	0	20.4	7.4	9.4	2.8	0.487
10	20.9	7.5	9.3	2.8	0.486	10	20.4	7.4	9.4	2.1	0.488
20	20.4	7.5	9.3	2.7	0.486	20	20.4	7.3	9.4	3.0	0.487
30	20.3	7.5	9.3	2.8	0.487	30	20.3	7.2	9.4	3.1	0.486
40	20.3	7.5	9.3	2.5	0.486	40	19.9	6.6	9.3	3.7	0.484
50	17.1	7.4	9.2	2.4	0.483	50	18.8	5.9	9.2	3.3	0.479
60	16.2	7.3	9.1	1.9	0.481	60	14.9	6.2	9.1	3.2	0.479
70	15.4	7.1	9.1	2.1	0.481	70	13.9	6.3	9.0	2.4	0.478
80	14.1	7.4	9.0	1.7	0.478	80	13.1	6.6	9.0	2.1	0.477
90	13.2	7.5	9.0	1.2	0.476	90	12.2	6.8	9.0	1.9	0.476
100	11.7	7.8	9.0	1.3	0.473	100	11.5	7.0	9.0	1.3	0.473
110	10.6	7.9	9.0	1.1	0.472	110	11.0	7.1	9.0	1.3	0.474
120	10.0	8.0	8.9	0.6	0.472	120	10.4	7.1	8.8	1.5	0.471
130	9.3	8.0	8.9	1.1	0.471	130	10.2	7.2	8.9	1.1	0.472
140	9.1	8.0	8.9	0.9	0.470	140	10.2	7.2	8.9	1.3	0.472
		September									
0	20.5	7.4	9.4	2.1	0.486						
10	20.5	7.4	9.4	2.4	0.486						
20	20.4	7.3	9.4	2.7	0.486						
30	20.4	7.3	9.4	2.5	0.486						
40	20.4	7.2	9.4	2.7	0.486						
50	20.3	7.1	9.4	3.0	0.486						
60	19.5	6.2	9.3	2.6	0.486						
70	15.6	5.3	9.1	2.7	0.481						
80	13.7	5.5	9.0	2.7	0.477						
90	13.1	5.8	9.0	2.6	0.476						
100	12.5	5.9	9.0	1.7	0.476						
110	11.7	5.7	8.9	2.6	0.474						
120	11.1	6.1	8.9	2.3	0.473						
130	10.9	6.0	8.9	2.6	0.473						

Appendix 3 continued. Temperature (°C), dissolved oxygen (mg/L), pH (standard units), turbidity (NTU), and total dissolved solids (g/L), profiles by month at Pines site, Fort Peck Reservoir, 2017.

Depth	Temperature	Dissolved	pН	Turbidity	TDS	Depth	Temperature	Dissolved	pН	Turbidity	TDS
(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)	(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)
		May						June			
0	10.1	9.6	8.9	2.0	0.471	0	16.4	8.3	9.0	3.1	0.484
10	10.1	9.6	9.0	2.4	0.471	10	16.3	8.3	9.2	3.0	0.480
20	10.0	9.6	9.0	2.3	0.471	20	15.9	8.2	9.1	3.0	0.478
30	8.9	9.7	9.0	2.1	0.470	30	15.8	8.1	9.1	3.0	0.480
40	8.7	9.7	8.9	2.5	0.469	40	15.5	8.0	9.1	3.6	0.481
50	8.6	9.7	8.9	2.9	0.470	50	15.0	7.9	9.1	4.5	0.481
60	8.4	9.8	8.9	3.3	0.469	60	13.7	8.0	9.0	5.7	0.480
70	7.2	9.9	8.9	2.3	0.467	70	11.3	8.4	9.0	4.2	0.472
80	7.1	9.9	8.9	2.3	0.467	80	10.6	8.5	9.0	4.2	0.472
90	6.7	9.8	8.9	2.9	0.468	90	10.0	8.6	8.9	3.8	0.472
100	6.5	9.8	8.9	2.7	0.467	100	9.6	8.7	8.9	2.9	0.471
110						110	9.0	8.7	8.9	2.6	0.470
		July						August			
0	21.6	7.5	9.3	1.6	0.488	0	21.3	7.3	9.3	3.3	0.487
10	21.2	7.6	9.3	2.1	0.487	10	21.2	7.3	9.4	3.6	0.487
20	20.7	7.5	9.3	2.1	0.487	20	21.1	7.3	9.4	3.2	0.486
30	19.8	7.4	9.2	3.0	0.488	30	21.0	7.2	9.4	3.0	0.486
40	19.0	7.3	9.2	3.2	0.486	40	20.9	7.2	9.4	3.3	0.487
50	16.1	7.0	9.1	2.7	0.482	50	20.7	6.9	9.4	2.9	0.485
60	13.8	7.0	9.0	2.5	0.478	60	16.8	5.2	8.9	3.2	0.464
70	12.3	7.3	9.0	1.9	0.476	70	14.8	5.7	8.9	2.5	0.469
80	10.7	7.6	8.9	2.2	0.474	80	13.3	6.0	8.9	2.5	0.471
90	10.4	7.6	8.9	1.9	0.474	90	12.8	6.1	8.9	2.2	0.5
100	9.9	7.7	8.9	1.6	0.473	100	12.4	6.1	8.9	2.2	0.5
110	9.6	7.8	8.9	2.1	0.472						
		September									
0	20.4	7.1	9.4	2.5	0.481						
10	20.4	7.1	9.4	2.2	0.481						
20	20.4	7.0	9.4	2.5	0.481						
30	20.4	7.0	9.5	2.7	0.482						
40	20.4	7.0	9.5	2.7	0.480						
50	20.4	7.0	9.5	3.0	0.482						
60	20.1	6.4	9.4	2.9	0.482						
70	17.3	4.8	9.1	2.7	0.481						
80	15.1	4.9	9.0	2.7	0.478						
90	13.7	5.1	9.0	3.1	0.475						
100	12.7	5.0	8.9	3.6	0.472						

Appendix 3 continued. Temperature (°C), dissolved oxygen (mg/L), pH (standard units), turbidity (NTU), and total dissolved solids (g/L), profiles by month at Hell Creek site, Fort Peck Reservoir, 2017.

Depth	Temperature	Dissolved	pН	Turbidity	TDS	Depth	Temperature	Dissolved	pН	Turbidity	TDS
(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)	(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)
		May						June			
0	11.0	9.6	8.9	2.7	0.485	0	16.2	8.4	9.1	4.1	0.444
10	11.0	9.6	8.9	3.1	0.485	10	16.2	8.4	9.1	4.9	0.442
20	10.7	9.4	8.9	3.6	0.486	20	16.2	8.4	9.1	4.8	0.445
30	10.6	9.4	8.9	3.5	0.490	30	16.0	8.3	9.1	5.2	0.440
40	10.4	9.3	8.9	3.5	0.492	40	15.8	8.1	9.1	4.5	0.437
50	10.3	9.3	8.9	3.8	0.491	50	12.9	8.1	9.0	4.7	0.472
60	10.1	9.3	8.9	3.9	0.487	60	10.5	8.4	9.0	3.3	0.473
70	9.7	9.4	8.9	3.2	0.482	70	9.1	8.6	8.9	3.0	0.472
80	8.1	9.4	8.9	3.1	0.474	80	8.4	8.4	8.9	2.4	0.473
90	7.7	9.3	8.9	3.1	0.477	90	8.3	8.4	8.9	2.3	0.473
100	6.2	8.8	8.7	2.7	0.487	100	8.3	8.4	8.8	2.3	0.473
		July						August			
0	22.1	7.5	9.3	2.0	0.454	0	21.6	7.0	9.4	6.3	0.414
10	21.9	7.6	9.3	2.4	0.454	10	21.6	7.0	9.4	3.3	0.464
20	21.6	7.5	9.3	2.8	0.455	20	21.6	6.9	9.4	3.2	0.464
30	18.3	6.9	9.2	2.6	0.458	30	21.6	6.9	9.4	3.2	0.465
40	15.7	6.6	9.0	2.4	0.469	40	21.6	6.8	9.4	3.5	0.465
50	14.4	6.6	9.0	2.3	0.463	50	21.4	6.6	9.3	3.9	0.467
60	14.2	6.7	9.0	2.0	0.461	60	14.7	4.4	8.8	4.5	0.447
70	12.5	6.8	8.9	2.1	0.464	70	12.2	4.6	8.7	5.5	0.458
80	11.6	6.9	8.9	2.8	0.466	80	11.5	5.2	8.7	5.1	0.465
90	11.0	6.9	8.8	2.9	0.467	90	11.2	5.6	8.7	4.0	0.467
100	10.4	6.7	8.7	4.7	0.469	100	10.8	5.6	8.7	3.9	0.470
		September									
0	20.7	7.1	9.46	2.7	0.420						
10	20.7	7.0	9.49	2.3	0.421						
20	20.7	7.0	9.5	2.4	0.421						
30	20.7	7.0	9.5	2.6	0.422						
40	20.7	6.9	9.5	2.6	0.422						
50	20.7	6.9	9.51	2.5	0.422						
60	20.7	6.8	9.5	2.6	0.423						
70	15.8	3.8	8.89	2.8	0.466						
80	13.5	3.6	8.76	3.6	0.461						
90	12.3	3.7	8.71	4.8	0.462						
100	11.4	2.9	8.61	10.7	0.467						

Appendix 3 continued. Temperature (°C), dissolved oxygen (mg/L), pH (standard units), turbidity (NTU), and total dissolved solids (g/L), profiles by month at Timber Creek site, Fort Peck Reservoir, 2017.

Depth	Temperature	Dissolved	pН	Turbidity	TDS	Depth	Temperature	Dissolved	pН	Turbidity	TDS
(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)	(feet)	(C)	oxygen (mg/L)	(units)	(NTU)	(g/L)
		May						June			
0	12.9	9.1	8.9	8.1	0.506	0	17.7	7.9	9.1	8.1	0.359
10	12.9	9.0	8.9	8.4	0.506	10	16.7	7.7	9.1	8.6	0.379
20	12.3	8.8	8.9	4.9	0.503	20	15.1	7.5	9.0	7.5	0.405
30	9.1	8.6	8.8	3.0	0.502	30	10.7	7.8	8.9	5.9	0.465
40	8.4	8.6	8.7	2.9	0.501	40	9.7	7.9	8.9	8.2	0.474
50	8.2	8.6	8.7	2.5	0.500	50	9.6	7.9	8.9	9.0	0.475
60	7.9	8.7	8.7	2.7	0.497	60	9.5	7.9	8.9	9.8	0.476
		July						August			
0	22.9	7.6	9.4	3.5	0.370	0	22.3	6.8	9.3	6.4	0.386
10	22.8	7.5	9.4	3.5	0.371	10	22.3	6.7	9.4	6.3	0.387
20	22.2	7.3	9.4	3.3	0.379	20	22.2	6.4	9.3	8.2	0.394
30	20.7	6.7	9.2	5.3	0.388	30	22.1	6.3	9.3	9.1	0.397
40	15.4	5.7	8.9	5.2	0.420	40	20.3	4.3	9.0	10.7	0.405
50	14.3	5.7	8.8	4.7	0.428	50	17.8	3.0	8.7	10.7	0.419
60	12.2	4.9	8.6	15.9	0.450	60	16.1	2.2	8.5	11.0	0.423
		a									
		September									
0	20.4	6.6	9.3	4.0	0.340						
10	20.4	6.6	9.4	4.4	0.341						
20	20.4	6.5	9.4	4.8	0.343						
30	20.3	6.0	9.4	4.8	0.355						
40	19.3	3.8	9.0	6.4	0.428						
50	18.7	3.1	8.9	6.5	0.428						
60	15.4	1.1	8.6	7.2	0.436						

Appendix 4. Gill netting dates by region, water surface temperature range (°F), and reservoir elevation (MSL) during standard experimental gill net surveys on Fort Peck Reservoir. Mean water surface temperatures are given in parentheses.

			Region ¹			Water surface	Reservoir
Year	UBD	LBD	LMA	MMA	UMA	Temperature (°F)	Elevation (MSL)
1994	7/19 to 7/27	7/26 to 7/29	8/2 to 8/3	8/4 to 8/16	8/16 to 8/18	68 to 76 (72.6)	2238.1 to 2236.7
1995	7/18 to 7/21	7/25 to 7/28	8/8 to 8/24	8/1 to 8/15	8/15 to 8/17	68 to 76 (71.0)	2242.6 to 2244.1
1996	7/16 to 7/18	7/23 to 7/25	7/30 to 8/1	8/6 to 8/13	8/13 to 8/15	66 to 74 (69.4)	2246.5 to 2244.2
1998	7/17 to 7/28	7/15 to 7/21	7/14 to 7/30	8/5 to 8/11	8/11 to 8/13	NA	2239.7 to 2239.9
1999	7/13 to 7/20	7/15 to 7/22	7/23 to 7/28	7/29 to 8/9	8/10 to 8/11	67 to 76 (71.6)	2238.0 to 2236.9
2000	7/26 to 9/8	7/19 to 7/27	7/11 to 7/14	8/8 to 8/11	8/23 to 8/24	NA	2232.6 to 2231.0
2001	7/31 to 8/2	8/7 to 8/16	8/16 to 8/17	8/21 to 8/28	7/23 to 8/28	NA	2222.5 to 2221.8
2002	7/17 to 9/6	7/18 to 9/6	7/23 to 8/1	7/25 to 9/4	8/6 to 8/14	68 to 81 (74.3)	2220.2 to 2219.3
2003	7/10 to 8/20	7/10 to 8/5	7/8 to 8/13	7/15 to 8/12	7/22 to 7/24	NA	2213.0 to 2211.6
2004	7/14 to 7/15	7/13 to 7/15	7/20 to 7/22	7/21 to 7/27	7/27 to 7/29	69 to 77 (73.6)	2203.2 to 2201.6
2005	7/19 to 7/21	7/21 to 7/27	7/28 to 8/2	8/2 to 8/17	8/16 to 8/17	68 to 78 (72.1)	2203.4 to 2202.7
2006	7/11 to 7/13	7/18 to 7/20	7/20 to 7/26	7/26 to 8/3	8/3 to 8/16	69 to 80 (74.3)	2205.6 to 2204.2
2007	7/17 to 7/24	7/24 to 7/27	7/27 to 8/1	8/1 to 8/7	8/14 to 8/15	70.3 to 84.9 (78.2)	2202.9 to 2201.6
2008	7/15 to 7/17	7/17 to 7/23	7/24 to 7/30	7/30 to 8/4	8/4 to 8/6	67.1 to 80.2 (74.3)	2209.9 to 2210.0
2009	7/16 to 7/21	7/21 to 7/23	7/24 to 7/28	7/29 to 8/3	8/3 to 8/5	66.7 to 76.3 (71.1)	2220.5 to 2220.4
2010	7/13 to 7/20	7/20 to 7/22	7/22 to 7/28	7/28 to 8/5	8/3 to 8/5	67.3 to 77.9 (73.3)	2235.2 to 2235.7
2011	7/26 to 7/28	7/28 to 7/29	8/2 to 8/3	8/3 to 8/5	8/9 to 8/11	70.5 to 79.8 (75.2)	2249.3 to 2244.7
2012	7/17 to 7/19	7/19 to 7/20	7/24 to 7/25	7/25 to 8/1	7/30 to 8/1	67.2 to 83.5 (75.5)	2236.6 to 2235.8
2013	7/23 to 7/25	7/25 to 8/1	8/1 to 8/7	8/8 to 8/9	8/13 to 8/15	63.5 to 77.9 (72.3)	2236.3 to 2234.9
2014	7/17 to 7/22	7/22 to 7/24	7/24 to 7/30	7/30 to 8/7	8/5 to 8/7	67.8 to 79.8 (74.0)	2230.3 to 2229.9
2015	7/21 to 7/23	7/23 to 7/31	7/31 to 8/5	8/5 to 8/13	8/11 to 8/13	67.9 to 79.2 (73.0)	2236.4 to 2235.9
2016	7/19 to 7/21	7/21 to 7/27	7/27 to 8/3	8/2 to 8/5	8/9 to 8/11	69.4 to 77.7 (73.1)	2235.4 to 2234.7
2017	7/18 to 7/20	7/20 to 7/26	7/26 to 8/3	8/2 to 8/9	8/7 to 8/9	68.6 to 75.5 (72.1)	2239.6 to 2238.5

¹Upper Big Dry (UBD), Lower Big Dry (LBD), Lower Missouri Arm (LMA), Middle Missouri Arm (MMA), and upper Missouri Arm (UMA).

Appendix 5. Northern pike and channel catfish proportional stock density (PSD) relative stock density of preferred-length (PSD-P) fish and mean relative weight values (Wr), for 2002-2016, for fish collected in the standard July-August gill net survey, on Fort Peck Reservoir.

Northern pike										
Year	PSD	PSD-P	Wr	Sample size						
2002	94	62	102.0	144						
2003	98	55	101.1	126						
2004	96	71	100.1	75						
2005	93	59	100.3	86						
2006	89	60	98.9	108						
2007	75	41	101.0	147						
2008	89	39	100.0	137						
2009	73	39	93.1	176						
2010	68	24	100.0	191						
2011	69	18	100.5	293						
2012	75	15	99.0	503						
2013	75	24	93.1	324						
2014	82	33	96.2	336						
2015	88	40	97.5	264						
2016	82	38	92.9	226						
2017	90	32	90.3	184						

Channel catfish				
Year	PSD	PSD-P	Wr	Sample size
2002	74	3	89.9	145
2003	71	5	89.4	129
2004	57	11	98.1	227
2005	35	6	91.3	297
2006	46	10	95.1	215
2007	38	4	85.3	278
2008	35	2	88.2	289
2009	57	5	91.6	314
2010	74	11	88.2	104
2011	72	8	90.5	241
2012	65	3	87.9	272
2013	64	4	85.7	240
2014	80	3	84.7	246
2015	86	3	85.5	201
2016	65	4	86.5	217
2017	73	6	84.7	140